Effect of impurities on charge and heat transport in tubular nanowires

被引:0
作者
Heris, Hadi Rezaie [1 ]
Klausen, K. O. [1 ]
Sitek, Anna [2 ]
Erlingsson, Sigurdur, I [1 ]
Manolescu, Andrei [1 ]
机构
[1] Reykjavik Univ, Dept Engn, Menntavegur 1, IS-102 Reykjavik, Iceland
[2] Wroclaw Univ Sci & Technol, Dept Theoret Phys, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
thermoelectric current; tubular nanowires; electron localization; polygonal cross-section; heat transport; SILICON NANOWIRES; THERMOELECTRIC PROPERTIES; THERMAL-CONDUCTIVITY; ELECTRON-MOBILITY; NANOTUBES; PERFORMANCE; SCATTERING; GROWTH;
D O I
10.1088/1361-6528/acd062
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We calculate the charge and heat currents carried by electrons, originating from a temperature gradient and a chemical potential difference between the two ends of tubular nanowires with different geometries of the cross-sectional areas: circular, square, triangular, and hexagonal. We consider nanowires based on InAs semiconductor material, and use the Landauer-Buttiker approach to calculate the transport quantities. We include impurities in the form of delta scatterers and compare their effect for different geometries. The results depend on the quantum localization of the electrons along the edges of the tubular prismatic shell. For example, the effect of impurities on the charge and heat transport is weaker in the triangular shell than in the hexagonal shell, and the thermoelectric current in the triangular case is several times larger than in the hexagonal case, for the same temperature gradient.
引用
收藏
页数:12
相关论文
共 66 条
[1]   Thermal and chemical stability of diphenylalanine peptide nanotubes: Implications for nanotechnological applications [J].
Adler-Abramovich, L ;
Reches, M ;
Sedman, VL ;
Allen, S ;
Tendler, SJB ;
Gazit, E .
LANGMUIR, 2006, 22 (03) :1313-1320
[2]   High electron mobility in strained GaAs nanowires [J].
Balaghi, Leila ;
Shan, Si ;
Fotev, Ivan ;
Moebus, Finn ;
Rana, Rakesh ;
Venanzi, Tommaso ;
Hubner, Rene ;
Mikolajick, Thomas ;
Schneider, Harald ;
Helm, Manfred ;
Pashkin, Alexej ;
Dimakis, Emmanouil .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   A highly efficient bilayer graphene/ZnO/silicon nanowire based heterojunction photodetector with broadband spectral response [J].
Bansal, Shonak ;
Prakash, Krishna ;
Sharma, Kuldeep ;
Sardana, Neha ;
Kumar, Sanjeev ;
Gupta, Neena ;
Singh, Arun K. .
NANOTECHNOLOGY, 2020, 31 (40)
[4]  
Blomers C., 2012, NANOTECHNOLOGY, V24
[5]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[6]   Nanowires of four epitaxial hexagonal silicides grown on Si(001) [J].
Chen, Y ;
Ohlberg, DAA ;
Williams, RS .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (05) :3213-3218
[7]   Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states [J].
Choi, YM ;
Lee, DS ;
Czerw, R ;
Chiu, PW ;
Grobert, N ;
Terrones, M ;
Reyes-Reyes, M ;
Terrones, H ;
Charlier, JC ;
Ajayan, PM ;
Roth, S ;
Carroll, DL ;
Park, YW .
NANO LETTERS, 2003, 3 (06) :839-842
[8]   Low-temperature electronic transport of manganese silicide shell-protected single crystal nanowires for nanoelectronics applications [J].
Cruz, Alexsandro dos Santos E. da ;
Puydinger dos Santos, Marcos V. ;
Campanelli, Raul B. ;
Pagliuso, Pascoal G. ;
Bettini, Jefferson ;
Pirota, Kleber R. ;
Beron, Fanny .
NANOSCALE ADVANCES, 2021, 3 (11) :3251-3259
[9]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[10]   Electronic charge and spin density distribution in a quantum ring with spin-orbit and Coulomb interactions [J].
Daday, Csaba ;
Manolescu, Andrei ;
Marinescu, D. C. ;
Gudmundsson, Vidar .
PHYSICAL REVIEW B, 2011, 84 (11)