Poisson average maximum likelihood-centered penalized estimator: A new estimator to better address multicollinearity in Poisson regression

被引:3
|
作者
Li, Sheng [1 ,2 ]
Wang, Wei [1 ,2 ]
Yao, Menghan [1 ,2 ]
Wang, Junyu [1 ,2 ]
Du, Qianqian [1 ,2 ]
Li, Xuelin [1 ,2 ]
Tian, Xinyue [1 ,2 ]
Zeng, Jing [3 ]
Deng, Ying [3 ]
Zhang, Tao [1 ,2 ,4 ]
Yin, Fei [1 ]
Ma, Yue [1 ,2 ,4 ]
机构
[1] Sichuan Univ, West China Sch Publ Hlth, Dept Epidemiol & Biostat, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp 4, Chengdu, Peoples R China
[3] Sichuan Ctr Dis Control & Prevent, Dept Chron Dis Surveillance, Chengdu, Peoples R China
[4] Sichuan Univ, Inst Syst Epidemiol, West China Sch Publ Hlth, Chengdu, Peoples R China
关键词
multicollinearity; Poisson penalized estimator; Poisson regression; shrinkage center; LIU-TYPE ESTIMATOR; RIDGE-REGRESSION;
D O I
10.1111/stan.12313
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Poisson ridge estimator (PRE) is a commonly used parameter estimation method to address multicollinearity in Poisson regression (PR). However, PRE shrinks the parameters toward zero, contradicting the real association. In such cases, PRE tends to become an insufficient solution for multicollinearity. In this work, we proposed a new estimator called the Poisson average maximum likelihood-centered penalized estimator (PAMLPE), which shrinks the parameters toward the weighted average of the maximum likelihood estimators. We conducted a simulation study and case study to compare PAMLPE with existing estimators in terms of mean squared error (MSE) and predictive mean squared error (PMSE). These results suggest that PAMLPE can obtain smaller MSE and PMSE (i.e., more accurate estimates) than the Poisson ridge estimator, Poisson Liu estimator, and Poisson K-L estimator when the true & beta;$$ \beta $$s have the same sign and small variation. Therefore, we recommend using PAMLPE to address multicollinearity in PR when the signs of the true & beta;$$ \beta $$s are known to be identical in advance.
引用
收藏
页码:208 / 227
页数:20
相关论文
共 22 条
  • [1] Logistic average maximum likelihood-centered penalized estimator: a new estimator to better address multicollinearity in Logistic regression
    Li, Sheng
    Wang, Wei
    Du, Qianqian
    Wang, Junyu
    Yao, Menghan
    Tian, Xinyue
    Li, Xuelin
    Zeng, Jing
    Deng, Ying
    Zhang, Tao
    Yin, Fei
    Ma, Yue
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2025,
  • [2] A local maximum likelihood estimator for Poisson regression
    José António Santos
    M. Manuela Neves
    Metrika, 2008, 68 : 257 - 270
  • [3] A local maximum likelihood estimator for Poisson regression
    Santos, Jose Antonio
    Neves, M. Manuela
    METRIKA, 2008, 68 (03) : 257 - 270
  • [4] A new linearized ridge Poisson estimator in the presence of multicollinearity
    Jadhav, Nileshkumar H.
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (08) : 2016 - 2034
  • [5] A New Two-Parameter Estimator for the Poisson Regression Model
    Asar, Yasin
    Genc, Asir
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 793 - 803
  • [6] A New Two-Parameter Estimator for the Poisson Regression Model
    Yasin Asar
    Aşır Genç
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 793 - 803
  • [7] A new modified Jackknifed estimator for the Poisson regression model
    Turkan, Semra
    Ozel, Gamze
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (10) : 1892 - 1905
  • [8] A new Poisson Liu Regression Estimator: method and application
    Qasim, Muhammad
    Kibria, B. M. G.
    Mansson, Kristofer
    Sjolander, Par
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (12) : 2258 - 2271
  • [9] Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model
    Abdelwahab, Mahmoud M.
    Abonazel, Mohamed R.
    Hammad, Ali T.
    El-Masry, Amera M.
    AXIOMS, 2024, 13 (01)
  • [10] A new adjusted Liu estimator for the Poisson regression model
    Amin, Muhammad
    Akram, Muhammad Nauman
    Kibria, B. M. Golam
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (20)