Organic Solar Cells with Over 19% Efficiency Enabled by a 2D-Conjugated Non-fullerene Acceptor Featuring Favorable Electronic and Aggregation Structures

被引:134
|
作者
Liu, Kerui [1 ,2 ,3 ]
Jiang, Yuanyuan [1 ,2 ,3 ]
Liu, Feng [1 ,2 ]
Ran, Guangliu [4 ,5 ]
Huang, Fei [6 ]
Wang, Wenxuan [1 ,2 ,3 ]
Zhang, Wenkai [4 ,5 ]
Zhang, Cheng [6 ]
Hou, Jianhui [1 ,2 ,3 ]
Zhu, Xiaozhang [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Mol Sci, CAS Key Lab Organ Solids, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Chem, State Key Lab Polymer Phys & Chem, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China
[4] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[5] Beijing Normal Univ, Ctr Adv Quantum Studies, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China
[6] Sichuan Univ, Coll Chem, Key Lab Green Chem & Technol, Minist Educ, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
2D & pi; -expansion; non-fullerene acceptors; organic alloyed semiconductors; power conversion efficiency; single-crystal analysis; ternary organic solar cells; transfer integral;
D O I
10.1002/adma.202300363
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The p-expansion of non-fullerene acceptors is a promising method for boosting the organic photovoltaic performance by allowing the fine-tuning of electronic structures and molecular packing. In this work, highly efficient organic solar cells (OSCs) are fabricated using a 2D p-expansion strategy to design new non-fullerene acceptors. Compared with the quinoxaline-fused cores of AQx-16, the p-expanded phenazine-fused cores of AQx-18 induce more ordered and compact packing between adjacent molecules, affording an optimized morphology with rational phase separation in the blend film. This facilitates efficient exciton dissociation and inhibited charge recombination. Consequently, a power conversion efficiency (PCE) of 18.2% with simultaneously increasing V-oc, J(sc), and fill factor is achieved in the AQx-18-based binary OSCs. Significantly, AQx-18-based ternary devices fabricated via a two-in-one alloy acceptor strategy exhibit a superior PCE of 19.1%, one of the highest values ever reported for OSCs, along with a high V-oc of 0.928 V. These results indicate the importance of the 2D p-expansion strategy for the delicate regulation of the electronic structures and crystalline behaviors of the non-fullerene acceptors to achieve superior photovoltaic performance, aimed at significantly promoting further development of OSCs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor
    Bin, Haijun
    Gao, Liang
    Zhang, Zhi-Guo
    Yang, Yankang
    Zhang, Yindong
    Zhang, Chunfeng
    Chen, Shanshan
    Xue, Lingwei
    Yang, Changduk
    Xiao, Min
    Li, Yongfang
    NATURE COMMUNICATIONS, 2016, 7
  • [2] Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency
    Bin, Haijun
    Zhang, Zhi-Guo
    Gao, Liang
    Chen, Shanshan
    Zhong, Lian
    Xue, Lingwei
    Yang, Changduk
    Li, Yongfang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (13) : 4657 - 4664
  • [3] Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency
    Donghui Li
    Xiaolong Chen
    Jinglong Cai
    Wei Li
    Mengxue Chen
    Yuchao Mao
    Baocai Du
    Joel A. Smith
    Rachel C. Kilbride
    Mary E. O’Kane
    Xue Zhang
    Yuan Zhuang
    Pang Wang
    Hui Wang
    Dan Liu
    Richard A. L. Jones
    David G. Lidzey
    Tao Wang
    Science China Chemistry, 2020, 63 : 1461 - 1468
  • [4] Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency
    Li, Donghui
    Chen, Xiaolong
    Cai, Jinglong
    Li, Wei
    Chen, Mengxue
    Mao, Yuchao
    Du, Baocai
    Smith, Joel A.
    Kilbride, Rachel C.
    O'Kane, Mary E.
    Zhang, Xue
    Zhuang, Yuan
    Wang, Pang
    Wang, Hui
    Liu, Dan
    Jones, Richard A. L.
    Lidzey, David G.
    Wang, Tao
    SCIENCE CHINA-CHEMISTRY, 2020, 63 (10) : 1461 - 1468
  • [5] Effect of Alkoxy Side-Chains on Conjugated Polymer/Non-fullerene Acceptor Interfaces in Organic Solar Cells
    Haseena, Sheik
    Ravva, Mahesh Kumar
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (04) : 1713 - 1719
  • [6] Effect of Alkoxy Side-Chains on Conjugated Polymer/Non-fullerene Acceptor Interfaces in Organic Solar Cells
    Sheik Haseena
    Mahesh Kumar Ravva
    Journal of Electronic Materials, 2021, 50 : 1713 - 1719
  • [7] Wide bandgap polymer donors for high efficiency non-fullerene acceptor based organic solar cells
    He, Keqiang
    Kumar, Pankaj
    Yuan, Yi
    Li, Yuning
    MATERIALS ADVANCES, 2021, 2 (01): : 115 - 145
  • [8] Ternary blend organic solar cells with a non-fullerene acceptor as a third component to synergistically improve the efficiency
    Xu, Cheng
    Wright, Matthew
    Ping, Duanlei
    Yi, Haimang
    Zhang, Xueyun
    Mahmud, M. D. Arafat
    Sun, Kaiwen
    Upama, Mushfika Baishakhi
    Haque, Faiazul
    Uddin, Ashraf
    ORGANIC ELECTRONICS, 2018, 62 : 261 - 268
  • [9] Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells
    Zhu, Lei
    Zhang, Ming
    Zhong, Wenkai
    Leng, Shifeng
    Zhou, Guanqing
    Zou, Yecheng
    Su, Xuan
    Ding, Han
    Gu, Peiyang
    Liu, Feng
    Zhang, Yongming
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (08) : 4341 - 4357
  • [10] Quaternary Solar Cells with 12.5% Efficiency Enabled with Non-Fullerene and Fullerene Acceptor Guests to Improve Open Circuit Voltage and Film Morphology
    Li, Weiping
    Liu, Wenxu
    Zhang, Xin
    Yan, Dong
    Liu, Feng
    Zhan, Chuanlang
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (21)