Renal mitochondrial dysfunction in ovine experimental sepsis-associated acute kidney injury

被引:3
|
作者
Luther, Tomas [1 ]
Bulow-Anderberg, Sara [1 ]
Persson, Patrik [2 ]
Franzen, Stephanie [1 ]
Skorup, Paul [3 ]
Wernerson, Annika [4 ]
Hultenby, Kjell [5 ]
Palm, Fredrik [2 ]
Schiffer, Tomas A. [6 ]
Frithiof, Robert [1 ]
机构
[1] Uppsala Univ, Dept Surg Sci Anesthesiol & Intens Care, Uppsala, Sweden
[2] Uppsala Univ, Dept Med Cell Biol, Sect Integrat Physiol, Uppsala, Sweden
[3] Uppsala Univ, Dept Med Sci, Sect Infect Dis, Uppsala, Sweden
[4] Karolinska Inst, Dept Clin Sci Intervent & Technol, Div Renal Med, Stockholm, Sweden
[5] Karolinska Inst, Dept Lab Med, Div Biomol & Cellular Med, Stockholm, Sweden
[6] Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
acute kidney injury; mitochondria; sepsis; NITRIC-OXIDE; OXYGEN-CONSUMPTION; INHIBITION; INFLAMMATION; ACTIVATION; MECHANISMS; FAILURE;
D O I
10.1152/ajprenal.00294.2022
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Sheep develop sepsis-associated acute kidney injury (SA-AKI) during experimental sepsis despite normal to increased renal oxygen delivery. A disturbed relation between oxygen consumption (V_ O2) and renal Na thorn transport has been demonstrated in sheep and in clinical studies of AKI, which could be explained by mitochondrial dysfunction. We investigated the function of isolated renal mitochondria compared with renal oxygen handling in an ovine hyperdynamic model of SA-AKI. Anesthetized sheep were randomized to either an infusion of live Escherichia coli with resuscitative measures (sepsis group; n = 13 animals) or served as controls (n = 8 animals) for 28 h. Renal V_ O2 and Na thorn transport were repeatedly measured. Live cortical mitochondria were isolated at baseline and at the end of the experiment and assessed in vitro with high-resolution respirometry. Sepsis markedly reduced creatinine clearance, and the relation between Na thorn transport and renal V_ O2 was decreased in septic sheep compared with control sheep. Cortical mitochondrial function was altered in septic sheep with a reduced respiratory control ratio (6.0 & PLUSMN; 1.5 vs. 8.2 & PLUSMN; 1.6, P = 0.006) and increased complex II-to-complex I ratio during state 3 (1.6 & PLUSMN; 0.2 vs. 1.3 & PLUSMN; 0.1, P = 0.0014) mainly due to decreased complex I-dependent state 3 respiration (P = 0.016). However, no differences in renal mitochondrial efficiency or mitochondrial uncoupling were found. In conclusion, renal mitochondrial dysfunction composed of a reduction of the respiratory control ratio and an increased complex II/complex I relation in state 3 was demonstrated in an ovine model of SA-AKI. However, the disturbed relation between renal V_ O2 and renal Na thorn transport could not be explained by a change in renal cortical mitochondrial efficiency or uncoupling.NEW & NOTEWORTHY We studied the function of renal cortical mitochondria in relation to oxygen consumption in an ovine model of sepsis with acute kidney injury. We demonstrated changes in the electron transport chain induced by sepsis consisting of a reduced respiratory control ratio mainly by a reduced complex I-mediated respiration. Neither an increase in mitochondrial uncoupling nor a reduction in mitochondrial efficiency was demonstrated and cannot explain why oxygen consumption was unaffected despite reduced tubular transport.
引用
收藏
页码:F571 / F580
页数:10
相关论文
共 50 条
  • [31] Sepsis-Associated Acute Kidney Disease
    Peerapornratana, Sadudee
    Priyanka, Priyanka
    Wang, Shu
    Smith, Ali
    Singbartl, Kai
    Palevsky, Paul M.
    Chawla, Lakhmir S.
    Yealy, Donald M.
    Angus, Derek C.
    Kellum, John A.
    KIDNEY INTERNATIONAL REPORTS, 2020, 5 (06): : 839 - 850
  • [32] From Surviving Sepsis to Surviving Sepsis-Associated Acute Kidney Injury: Focusing on Risk Stratification of Acute Kidney Injury / Acute Kidney Disease After Sepsis
    Kothari, Niraj R.
    Gipson, Graham T.
    Kidd, Jason M.
    KIDNEY MEDICINE, 2021, 3 (04) : 475 - 477
  • [33] Update on sepsis-associated acute kidney injury: emerging targeted therapies
    Doyle, James F.
    Forni, Lui G.
    BIOLOGICS-TARGETS & THERAPY, 2016, 10 : 149 - 156
  • [34] Use of kidney injury molecule-1 for sepsis-associated acute kidney injury staging
    Molinari, Luca
    Landsittel, Douglas P.
    Kellum, John A.
    ProCESS Investigator
    ProGReSS-AKI Investigator
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2023, 38 (06) : 1560 - 1563
  • [35] The effects of antibiotic therapy on neonatal sepsis-associated acute kidney injury
    Pevzner, Irina B.
    Brezgunova, Anna A.
    Popkov, Vasily A.
    Sintsov, Mikhail Y.
    Andrianova, Nadezda V.
    Zorova, Ljubava D.
    Silachev, Denis N.
    Burov, Artem A.
    Podurovskaya, Yulia L.
    Zorov, Dmitry B.
    Plotnikov, Egor Y.
    Sukhikh, Gennady T.
    LIFE SCIENCES, 2024, 338
  • [36] The mechanism of PLTP on sepsis-associated acute kidney injury: some hints
    Lin Song
    Wei Jiang
    Yang Yu
    Jiangquan Yu
    Ruiqiang Zheng
    Critical Care, 29 (1):
  • [37] Non-Coding RNAs in Sepsis-Associated Acute Kidney Injury
    Chen, Yanna
    Jing, Huan
    Tang, Simin
    Liu, Pei
    Cheng, Ye
    Fan, Youling
    Chen, Hongtao
    Zhou, Jun
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [38] Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury
    Filippo Fani
    Giuseppe Regolisti
    Marco Delsante
    Vincenzo Cantaluppi
    Giuseppe Castellano
    Loreto Gesualdo
    Gianluca Villa
    Enrico Fiaccadori
    Journal of Nephrology, 2018, 31 : 351 - 359
  • [39] Candidate Biomarkers for Sepsis-Associated Acute Kidney Injury Mechanistic Studies
    Odum, James D.
    Standage, Steve
    Alder, Matthew
    Zingarelli, Basilia
    Devarajan, Prasad
    Wong, Hector R.
    SHOCK, 2022, 57 (05): : 687 - 693
  • [40] Sepsis-associated acute kidney injury: is COVID-19 different?
    Kellum, John A.
    Nadim, Mitra K.
    Forni, Lui G.
    KIDNEY INTERNATIONAL, 2020, 98 (06) : 1370 - 1372