Investigation on the environmental impact of R32, R152a and R41 refrigerant blends

被引:0
|
作者
Karthik, M. S. Kiran [1 ]
Samuel, K. John [2 ]
Bhargav, K. Pawan [1 ]
Varma, K. S. Dileep [1 ]
Subramanian, Anirudh [1 ]
Kanna, N. Santhosh [1 ]
Bibin, B. S. [1 ]
Gundabattini, Edison [3 ]
机构
[1] Vellore Inst Technol VIT, Sch Mech Engn, Vellore 632014, India
[2] Srinivasa Ramanujan Inst Technol, Dept Mech Engn, Anantapur 515701, India
[3] Vellore Inst Technol VIT, Sch Mech Engn, Dept Thermal & Energy Engn, Vellore 632014, India
来源
ENGINEERING RESEARCH EXPRESS | 2023年 / 5卷 / 02期
关键词
Global warming potential; HFOs; Refrigerants; Refrigerant properties; Zeotropic refrigerant mixture; MIXTURES; SYSTEMS; R1234YF; GWP;
D O I
10.1088/2631-8695/acdf3e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The improper usage of refrigerants has a drastic impact on the environment, which is contributing to global warming and ozone layer depletion. The refrigerants which are being used currently have a very high GWP (Global Warming Potential) value that signifies an adverse impact on global warming. Refrigerant properties can be enhanced and modified by making refrigerant blends. This research uses GWP as a measure of refrigerant impact on global warming and provides alternative refrigerant blends for R32, R41, and R152a refrigerants. The results show 89.1% and 88.64% reduction in the GWP value of the R32 refrigerant blend and R152a refrigerant blend respectively. The R41 refrigerant blend has shown a reduction of 78.26%, with higher performance characteristics.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] 替代工质R152a与R22/R152a的溶油性研究
    葛芊,阴建民,何茂刚,刘志刚
    西安交通大学学报, 1996, (05) : 12 - 16
  • [32] Pool boiling heat transfer of refrigerant mixtures R32/R125
    Shen, JY
    Spindler, K
    Hahne, E
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1999, 26 (08) : 1091 - 1102
  • [33] Performance analyses of an automobile air-conditioning system with R22/R124/R152a refrigerant
    Chiang Mai Univ, Chiang Mai, Thailand
    Appl Therm Eng, 11 (1085-1097):
  • [34] Performance analyses of an automobile air-conditioning system with R22/R124/R152A refrigerant
    Kiatsiriroat, T
    Euakit, T
    APPLIED THERMAL ENGINEERING, 1997, 17 (11) : 1085 - 1097
  • [35] MEASUREMENTS OF THE VAPOR LIQUID COEXISTENCE CURVE IN THE CRITICAL REGION FOR REFRIGERANT MIXTURE R152A/R22
    WANG, J
    LIU, ZG
    TAN, LC
    YIN, JM
    FLUID PHASE EQUILIBRIA, 1992, 80 : 203 - 211
  • [36] Calculation model and analysis of thermodynamic properties of R32 refrigerant
    Qiu L.
    Gu B.
    Miao M.
    Huagong Xuebao/CIESC Journal, 2019, 70 (06): : 2075 - 2082
  • [37] Experimental Study on PVTx Properties of a Binary R1 234yf/R152a Refrigerant
    Xu, Xiaolei
    Qi, Yingxia
    Lu, Yang
    Han, Shukang
    Yang, Yushui
    Zhang, Xinqi
    Ge, Yinfei
    Liu, Yefeng
    Zhao, Wei
    Zhang, Hua
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2022, 67 (10): : 2913 - 2919
  • [38] Feasibility analysis on R1234yf/R152a replacing R134a as direct cooling refrigerant for electric vehicles
    Kang, Yujia
    Zhang, Chunhua
    Hu, Yunpeng
    Yang, Ke
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (05) : 2661 - 2672
  • [39] Theoretical study of R32 to replace R410A in variable refrigerant flow systems
    Yildirim, Canberk
    Ozkan, Derya Burcu
    Onan, Cenk
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2018, 39 (01) : 87 - 92
  • [40] The performance of a triple pressure level absorption cycle (TPLAC) with working fluids based on the absorbent DMEU and the refrigerants R22, R32, R124, R125, R134a and R152a
    Jelinek, M.
    Levy, A.
    Borde, I.
    APPLIED THERMAL ENGINEERING, 2008, 28 (11-12) : 1551 - 1555