Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation

被引:30
作者
Chen, Sai [1 ,2 ,3 ]
Luo, Ran [1 ,2 ,3 ]
Zhao, Zhi-Jian [1 ,2 ]
Pei, Chunlei [1 ,2 ]
Xu, Yiyi [1 ,2 ]
Lu, Zhenpu [1 ,2 ]
Zhao, Chengjie [1 ,2 ]
Song, Hongbo [1 ,2 ]
Gong, Jinlong [1 ,2 ,3 ,4 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Int Campus Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Fuzhou 350207, Peoples R China
[4] Natl Ind Educ Platform Energy Storage, Tianjin 300350, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金; 国家重点研发计划;
关键词
FINDING SADDLE-POINTS; OXIDATIVE DEHYDROGENATION; ACTIVE-SITES; CATALYST; CERIA; STABILITY; CHEMISTRY; KINETICS; SUPPORT; PROPENE;
D O I
10.1038/s41467-023-38284-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-oxidative dehydrogenation technologies suffer from the thermodynamic equilibrium limitations and severe coking. Here, the authors report the intensified propane dehydrogenation to propylene by the chemical looping engineering on nanoscale core-shell redox catalysts. Propane dehydrogenation (PDH) is an industrial technology for direct propylene production which has received extensive attention in recent years. Nevertheless, existing non-oxidative dehydrogenation technologies still suffer from the thermodynamic equilibrium limitations and severe coking. Here, we develop the intensified propane dehydrogenation to propylene by the chemical looping engineering on nanoscale core-shell redox catalysts. The core-shell redox catalyst combines dehydrogenation catalyst and solid oxygen carrier at one particle, preferably compose of two to three atomic layer-type vanadia coating ceria nanodomains. The highest 93.5% propylene selectivity is obtained, sustaining 43.6% propylene yield under 300 long-term dehydrogenation-oxidation cycles, which outperforms an analog of industrially relevant K-CrOx/Al2O3 catalysts and exhibits 45% energy savings in the scale-up of chemical looping scheme. Combining in situ spectroscopies, kinetics, and theoretical calculation, an intrinsically dynamic lattice oxygen "donator-acceptor" process is proposed that O2- generated from the ceria oxygen carrier is boosted to diffuse and transfer to vanadia dehydrogenation sites via a concerted hopping pathway at the interface, stabilizing surface vanadia with moderate oxygen coverage at pseudo steady state for selective dehydrogenation without significant overoxidation or cracking.
引用
收藏
页数:11
相关论文
共 44 条
  • [1] Dehydrogenation and oxydehydrogenation of paraffins to olefins
    Bhasin, MM
    McCain, JH
    Vora, BV
    Imai, T
    Pujadó, PR
    [J]. APPLIED CATALYSIS A-GENERAL, 2001, 221 (1-2) : 397 - 419
  • [2] A DFT Study of the Electronic, Magnetic and Structural Properties of Rutile VO2
    Biswas, Sarajit
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (01) : 117 - 128
  • [3] Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts
    Carrero, C. A.
    Schloegl, R.
    Wachs, I. E.
    Schomaecker, R.
    [J]. ACS CATALYSIS, 2014, 4 (10): : 3357 - 3380
  • [4] Structure of the catalytically active copper-ceria interfacial perimeter
    Chen, Aling
    Yu, Xiaojuan
    Zhou, Yan
    Miao, Shu
    Li, Yong
    Kuld, Sebastian
    Sehested, Jens
    Liu, Jingyue
    Aoki, Toshihiro
    Hong, Song
    Camellone, Matteo Farnesi
    Fabris, Stefano
    Ning, Jing
    Jin, Chuanchuan
    Yang, Chengwu
    Nefedov, Alexei
    Woell, Christof
    Wang, Yuemin
    Shen, Wenjie
    [J]. NATURE CATALYSIS, 2019, 2 (04) : 334 - 341
  • [5] Chen S., 2023, FIGSHARE, DOI [10.6084/m9.figshare.22662043, DOI 10.6084/M9.FIGSHARE.22662043]
  • [6] Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies
    Chen, Sai
    Chang, Xin
    Sun, Guodong
    Zhang, Tingting
    Xu, Yiyi
    Wang, Yang
    Pei, Chunlei
    Gong, Jinlong
    [J]. CHEMICAL SOCIETY REVIEWS, 2021, 50 (05) : 3315 - 3354
  • [7] Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation
    Chen, Sai
    Zeng, Liang
    Mu, Rentao
    Xiong, Chuanye
    Zhao, Zhi-Jian
    Zhao, Chengjie
    Pei, Chunlei
    Peng, Luming
    Luo, Jun
    Fan, Liang-Shih
    Gong, Jinlong
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (47) : 18653 - 18657
  • [8] Deep Oxidations in the Oxidative Dehydrogenation Reaction of Propane over V2O5(001): Periodic Density Functional Theory Study
    Dai, Guo-Liang
    Li, Zhen-Hua
    Lu, Jing
    Wang, Wen-Ning
    Fan, Kang-Nian
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (01) : 807 - 817
  • [9] Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
    Dudarev, SL
    Botton, GA
    Savrasov, SY
    Humphreys, CJ
    Sutton, AP
    [J]. PHYSICAL REVIEW B, 1998, 57 (03) : 1505 - 1509
  • [10] Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface
    Fu, Hui
    Liu, Zhi-Pan
    Li, Zhen-Hua
    Wang, Wen-Ning
    Fan, Kang-Nian
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (34) : 11114 - 11123