Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation

被引:38
作者
Chen, Sai [1 ,2 ,3 ]
Luo, Ran [1 ,2 ,3 ]
Zhao, Zhi-Jian [1 ,2 ]
Pei, Chunlei [1 ,2 ]
Xu, Yiyi [1 ,2 ]
Lu, Zhenpu [1 ,2 ]
Zhao, Chengjie [1 ,2 ]
Song, Hongbo [1 ,2 ]
Gong, Jinlong [1 ,2 ,3 ,4 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Int Campus Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Fuzhou 350207, Peoples R China
[4] Natl Ind Educ Platform Energy Storage, Tianjin 300350, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会; 国家重点研发计划;
关键词
FINDING SADDLE-POINTS; OXIDATIVE DEHYDROGENATION; ACTIVE-SITES; CATALYST; CERIA; STABILITY; CHEMISTRY; KINETICS; SUPPORT; PROPENE;
D O I
10.1038/s41467-023-38284-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-oxidative dehydrogenation technologies suffer from the thermodynamic equilibrium limitations and severe coking. Here, the authors report the intensified propane dehydrogenation to propylene by the chemical looping engineering on nanoscale core-shell redox catalysts. Propane dehydrogenation (PDH) is an industrial technology for direct propylene production which has received extensive attention in recent years. Nevertheless, existing non-oxidative dehydrogenation technologies still suffer from the thermodynamic equilibrium limitations and severe coking. Here, we develop the intensified propane dehydrogenation to propylene by the chemical looping engineering on nanoscale core-shell redox catalysts. The core-shell redox catalyst combines dehydrogenation catalyst and solid oxygen carrier at one particle, preferably compose of two to three atomic layer-type vanadia coating ceria nanodomains. The highest 93.5% propylene selectivity is obtained, sustaining 43.6% propylene yield under 300 long-term dehydrogenation-oxidation cycles, which outperforms an analog of industrially relevant K-CrOx/Al2O3 catalysts and exhibits 45% energy savings in the scale-up of chemical looping scheme. Combining in situ spectroscopies, kinetics, and theoretical calculation, an intrinsically dynamic lattice oxygen "donator-acceptor" process is proposed that O2- generated from the ceria oxygen carrier is boosted to diffuse and transfer to vanadia dehydrogenation sites via a concerted hopping pathway at the interface, stabilizing surface vanadia with moderate oxygen coverage at pseudo steady state for selective dehydrogenation without significant overoxidation or cracking.
引用
收藏
页数:11
相关论文
共 44 条
[1]   Dehydrogenation and oxydehydrogenation of paraffins to olefins [J].
Bhasin, MM ;
McCain, JH ;
Vora, BV ;
Imai, T ;
Pujadó, PR .
APPLIED CATALYSIS A-GENERAL, 2001, 221 (1-2) :397-419
[2]   A DFT Study of the Electronic, Magnetic and Structural Properties of Rutile VO2 [J].
Biswas, Sarajit .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (01) :117-128
[3]   Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts [J].
Carrero, C. A. ;
Schloegl, R. ;
Wachs, I. E. ;
Schomaecker, R. .
ACS CATALYSIS, 2014, 4 (10) :3357-3380
[4]   Structure of the catalytically active copper-ceria interfacial perimeter [J].
Chen, Aling ;
Yu, Xiaojuan ;
Zhou, Yan ;
Miao, Shu ;
Li, Yong ;
Kuld, Sebastian ;
Sehested, Jens ;
Liu, Jingyue ;
Aoki, Toshihiro ;
Hong, Song ;
Camellone, Matteo Farnesi ;
Fabris, Stefano ;
Ning, Jing ;
Jin, Chuanchuan ;
Yang, Chengwu ;
Nefedov, Alexei ;
Woell, Christof ;
Wang, Yuemin ;
Shen, Wenjie .
NATURE CATALYSIS, 2019, 2 (04) :334-341
[5]  
Chen S., 2023, FIGSHARE, DOI [10.6084/m9.figshare.22662043, DOI 10.6084/M9.FIGSHARE.22662043]
[6]   Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies [J].
Chen, Sai ;
Chang, Xin ;
Sun, Guodong ;
Zhang, Tingting ;
Xu, Yiyi ;
Wang, Yang ;
Pei, Chunlei ;
Gong, Jinlong .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (05) :3315-3354
[7]   Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation [J].
Chen, Sai ;
Zeng, Liang ;
Mu, Rentao ;
Xiong, Chuanye ;
Zhao, Zhi-Jian ;
Zhao, Chengjie ;
Pei, Chunlei ;
Peng, Luming ;
Luo, Jun ;
Fan, Liang-Shih ;
Gong, Jinlong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (47) :18653-18657
[8]   Deep Oxidations in the Oxidative Dehydrogenation Reaction of Propane over V2O5(001): Periodic Density Functional Theory Study [J].
Dai, Guo-Liang ;
Li, Zhen-Hua ;
Lu, Jing ;
Wang, Wen-Ning ;
Fan, Kang-Nian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (01) :807-817
[9]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[10]   Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface [J].
Fu, Hui ;
Liu, Zhi-Pan ;
Li, Zhen-Hua ;
Wang, Wen-Ning ;
Fan, Kang-Nian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (34) :11114-11123