A Comprehensive Survey on Privacy-Preserving Techniques in Federated Recommendation Systems

被引:11
|
作者
Asad, Muhammad [1 ]
Shaukat, Saima [1 ]
Javanmardi, Ehsan [1 ]
Nakazato, Jin [1 ]
Tsukada, Manabu [1 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Creat Informat, Tokyo 1138654, Japan
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 10期
关键词
federated recommendation systems; privacy preserving; big data; data sharing; DIFFERENTIAL PRIVACY; MATRIX FACTORIZATION; LEARNING SCHEME;
D O I
10.3390/app13106201
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Big data is a rapidly growing field, and new developments are constantly emerging to address various challenges. One such development is the use of federated learning for recommendation systems (FRSs). An FRS provides a way to protect user privacy by training recommendation models using intermediate parameters instead of real user data. This approach allows for cooperation between data platforms while still complying with privacy regulations. In this paper, we explored the current state of research on FRSs, highlighting existing research issues and possible solutions. Specifically, we looked at how FRSs can be used to protect user privacy while still allowing organizations to benefit from the data they share. Additionally, we examined potential applications of FRSs in the context of big data, exploring how these systems can be used to facilitate secure data sharing and collaboration. Finally, we discuss the challenges associated with developing and deploying FRSs in the real world and how these challenges can be addressed.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Towards Efficient and Privacy-preserving Federated Deep Learning
    Hao, Meng
    Li, Hongwei
    Xu, Guowen
    Liu, Sen
    Yang, Haomiao
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [22] Local Model Privacy-Preserving Study for Federated Learning
    Pan, Kaiyun
    He, Daojing
    Xu, Chuan
    SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, SECURECOMM 2021, PT I, 2021, 398 : 287 - 307
  • [23] Survey on Privacy-Preserving Machine Learning
    Liu J.
    Meng X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2020, 57 (02): : 346 - 362
  • [24] FedNCF: Federated Neural Collaborative Filtering for Privacy-preserving Recommender System
    Jiang, Xueyong
    Liu, Baisong
    Qin, Jiangchen
    Zhang, Yunchong
    Qian, Jiangbo
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [25] Privacy-Preserving Recommendation with Debiased Obfuscaiton
    Lin, Chennan
    Liu, Baisong
    Zhang, Xueyuan
    Wang, Zhiye
    Hu, Ce
    Luo, Linze
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 590 - 597
  • [26] Medical Privacy-preserving Service Recommendation
    Zhang, Linjie
    Zhu, Xiaoyan
    Ma, Jianfeng
    Ma, Zhuo
    Yuan, Danni
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [27] Privacy-preserving Federated Learning System for Fatigue Detection
    Mohammadi, Mohammadreza
    Allocca, Roberto
    Eklund, David
    Shrestha, Rakesh
    Sinaei, Sima
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 624 - 629
  • [28] Randomization is all you need: A privacy-preserving federated learning framework for news recommendation
    Huang, Xinyi
    Luo, Yuchuan
    Liu, Lin
    Zhao, Wentao
    Fu, Shaojing
    INFORMATION SCIENCES, 2023, 637
  • [29] Privacy-Preserving Techniques in Biometric Systems: Approaches and Challenges
    Prakasha, K. Krishna
    Sumalatha, U.
    IEEE ACCESS, 2025, 13 : 32584 - 32616
  • [30] Privacy-Preserving Cross-Domain Sequential Recommendation
    Lin, Zhaohao
    Pan, Weike
    Ming, Zhong
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1139 - 1144