IMPROVED LOG-CONCAVITY FOR ROTATIONALLY INVARIANT MEASURES OF SYMMETRIC CONVEX SETS

被引:4
作者
Cordero-Erausquin, Dario [1 ]
Rotem, Liran [2 ]
机构
[1] Sorbonne Univ, Inst Math Jussieu, Paris, France
[2] Technion Israel Inst Technol, Fac Math, Haifa, Israel
关键词
(B) conjecture; Gardner-Zvavitch conjecture; log-concavity; Brunn-Minkowski; Brascamp-Lieb inequality; Poincare inequality; BRUNN-MINKOWSKI INEQUALITIES; SMALL BALL PROBABILITY; POINCARE;
D O I
10.1214/22-AOP1604
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the (B) conjecture and the Gardner-Zvavitch conjecture are true for all log-concave measures that are rotationally invariant, extend-ing previous results known for Gaussian measures. Actually, our result apply beyond the case of log-concave measures, for instance, to Cauchy measures as well. For the proof, new sharp weighted Poincare inequalities are obtained for even probability measures that are log-concave with respect to a rotation-ally invariant measure.
引用
收藏
页码:987 / 1003
页数:17
相关论文
共 25 条
[1]  
[Anonymous], 2002, P INT C MATHEMATICIA
[2]  
Bakry Dominique, 1985, Seminaire de probabilites de Strasbourg, P177, DOI 10.1007/BFb0075847
[3]  
BOBKOV S. G., 2022, ADV ANAL GEOM, V6, P135, DOI [10.1515/9783110741711-008, DOI 10.1515/9783110741711-008]
[4]   WEIGHTED POINCARE-TYPE INEQUALITIES FOR CAUCHY AND OTHER CONVEX MEASURES [J].
Bobkov, Sergey G. ;
Ledoux, Michel .
ANNALS OF PROBABILITY, 2009, 37 (02) :403-427
[5]   The log-Brunn-Minkowski inequality [J].
Boeroeczky, Karoly J. ;
Lutwak, Erwin ;
Yang, Deane ;
Zhang, Gaoyong .
ADVANCES IN MATHEMATICS, 2012, 231 (3-4) :1974-1997
[6]  
Borell Bor75b Christer, 1975, Period.Math.Hungar, V6, P111
[7]   CONVEX MEASURES ON LOCALLY CONVEX-SPACES [J].
BORELL, C .
ARKIV FOR MATEMATIK, 1974, 12 (02) :239-252
[8]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[9]   From the Brunn-Minkowski inequality to a class of Poincare-type inequalities [J].
Colesanti, Andrea .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (05) :765-772
[10]   On the stability of Brunn-Minkowski type inequalities [J].
Colesanti, Andrea ;
Livshyts, Galyna V. ;
Marsiglietti, Arnaud .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (03) :1120-1139