Double-Absorber CZTS/Sb2Se3 Architecture for High-Efficiency Solar-Cell Devices

被引:11
作者
Kumar, Atul [1 ]
Sujith, M. [2 ]
Valarmathi, K. [3 ]
Kumar, Rajnish [4 ]
Al-Asbahi, Bandar Ali [5 ]
Ahmed, Abdullah Ahmed Ali [6 ,7 ]
机构
[1] Koneru Lakshmaiah Educ Fdn, Dept Elect & Commun Engn, Guntur 522502, Andhra Pradesh, India
[2] Sanjivani Coll Engn, Dept Elect Engn, Kopargaon 423603, Maharashtra, India
[3] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai 600127, India
[4] Patliputra Univ, Coll Commerce Arts & Sci, Dept Phys, Patna 800020, Bihar, India
[5] King Saudi Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[6] Univ Hamburg, Ctr Hybrid Nanostruct CHyN, D-20146 Hamburg, Germany
[7] Univ Hamburg, Fachbereich Phys, D-20146 Hamburg, Germany
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2023年 / 220卷 / 11期
关键词
band offset; Cu2ZnSnS4; Double Absorber; interface; Sb2Se3; PHOTOVOLTAIC CELL; PERFORMANCE; SIMULATION; ENHANCEMENT; PROGRESS; SB2SE3;
D O I
10.1002/pssa.202200902
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The design and configuration of solar cells are critical for photovoltaic action and achieving high efficiency. Herein, the double-absorber solar-cell architecture of low-bandgap Sb2Se3 and high-bandgap Cu2ZnSnS4 (CZTS) absorbers for broader spectrum utilization leading to higher efficiency are comprehensively analyzed. The cost-effective chalcogenides CZTS and Sb2Se3 for high-efficiency dual-absorber configuration to show the possibility of high wattage at a lower cost are taken. The crucial parameters of bandgap pair and thickness are optimized for synergetic device performance and optimal utilization of the incident spectrum. By introducing an additional absorber-absorber interface, the interfacial defect at CZTS/Sb2Se3 is lowered by optimizing the band offset for the efficient functioning of a double-absorber device. The proposed device has straightforward NiO/CZTS/Sb2Se3/AZO architecture suitable for low-cost fabrication with high efficiency of 30.9%.
引用
收藏
页数:10
相关论文
共 66 条
[1]   Double-absorber thin-film solar cell with 34% efficiency [J].
Ahmad, Faiz ;
Lakhtakia, Akhlesh ;
Monk, Peter B. .
APPLIED PHYSICS LETTERS, 2020, 117 (03)
[2]   Design of perovskite/crystalline-silicon monolithic tandem solar cells [J].
Altazin, S. ;
Stepanova, L. ;
Werner, J. ;
Niesen, B. ;
Ballif, C. ;
Ruhstaller, B. .
OPTICS EXPRESS, 2018, 26 (10) :A579-A590
[3]   Efficiency boost of CZTS solar cells based on double-absorber architecture: Device modeling and analysis [J].
AlZoubi, Tariq ;
Moghrabi, Ahmad ;
Moustafa, Mohamed ;
Yasin, Shadi .
SOLAR ENERGY, 2021, 225 :44-52
[4]   The influence of top electrode work function on the performance of methylammonium lead iodide based perovskite solar cells having various electron transport layers [J].
Bag, Atanu ;
Pandey, Rahul ;
Kashyap, Savita ;
Madan, Jaya ;
Ramanujam, Jeyakumar .
CHEMICAL PHYSICS LETTERS, 2022, 806
[5]   A comprehensive review on Cu2ZnSnS4 (CZTS) thin film for solar cell: forecast issues and future anticipation [J].
Baid, Mitisha ;
Hashmi, Ayesha ;
Jain, Bhawana ;
Singh, Ajaya Kumar ;
Susan, Md. Abu Bin Hasan ;
Aleksandrova, Mariya .
OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (11)
[6]   Present Status and Future Perspective of Antimony Chalcogenide (Sb2X3) Photovoltaics [J].
Barthwal, Swapnil ;
Kumar, Rahul ;
Pathak, Sandeep .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) :6545-6585
[7]   Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D [J].
Basak, Arindam ;
Singh, Udai P. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 230
[8]   Modelling polycrystalline semiconductor solar cells [J].
Burgelman, M ;
Nollet, P ;
Degrave, S .
THIN SOLID FILMS, 2000, 361 :527-532
[9]   Advanced electrical simulation of thin film solar cells [J].
Burgelman, Marc ;
Decock, Koen ;
Khelifi, Samira ;
Abass, Aimi .
THIN SOLID FILMS, 2013, 535 :296-301
[10]   Recent progress and perspectives on Sb2Se3-based photocathodes for solar hydrogen production via photoelectrochemical water splitting [J].
Chen, Shuo ;
Liu, Tianxiang ;
Zheng, Zhuanghao ;
Ishaq, Muhammad ;
Liang, Guangxing ;
Fan, Ping ;
Chen, Tao ;
Tang, Jiang .
JOURNAL OF ENERGY CHEMISTRY, 2022, 67 :508-523