Low-Carbon Economic Dispatch of Integrated Electricity-Gas Energy System Considering Carbon Capture, Utilization and Storage

被引:15
作者
Liu, Xinghua [1 ]
Li, Xiang [1 ]
Tian, Jiaqiang [2 ]
Yang, Guoqing [1 ]
Wu, Huibao [3 ]
Ha, Rong [4 ]
Wang, Peng [5 ]
机构
[1] Xian Univ Technol, Sch Elect Engn, Xian 710048, Peoples R China
[2] Anhui Univ, Sch Elect Engn & Automat, Hefei 230039, Peoples R China
[3] State Grid Xian Elect Power Supply Co, Xian 710000, Peoples R China
[4] Xian Jinze Elect Technol Co Ltd, Xian 710100, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Carbon dioxide; Emissions trading; Power systems; Natural gas; Combustion; Biological system modeling; Mathematical models; Low-carbon electricity; integrated electricity-gas system (IEGS); economic dispatch; carbon capture; utilization and storage (CCUS); mixed integer linear programming (MILP); POWER; STRATEGY;
D O I
10.1109/ACCESS.2023.3255508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of modern industry, while improving people's living standards, the over-exploitation of coal, oil and natural gas has led to a shortage of fossil energy, global warming and an increasingly serious deterioration of the ecological environment. To mitigate the greenhouse effect caused by excessive carbon emissions, the vigorous development of integrated electricity-gas system (IEGS) dominated by clean energy is the future trend of sustainable development of energy systems. In this paper, a bi-level optimal scheduling model is proposed for an IEGS considering carbon capture, utilization and storage (CCUS), and the ladder carbon trading mechanism is introduced to convert carbon emissions into economic benefits. The upper model is an optimal distribution model of natural gas network, and the lower model is a day-ahead economic dispatch model of power system. Based on the Karush-Kuhn-Tucher (KKT) condition and strong duality theory of the lower model, the bi-level model is transformed into a mixed integer linear programming (MILP), which is solved by calling CPLEX through the Yalmip toolbox of the Matlab platform. Finally, the reasonableness and validity of the model are verified by three arithmetic simulations. The results show that the proposed bi-level model for low-carbon economic dispatch of IEGS considering CCUS can effectively reduce the operating costs and carbon emissions of the system.
引用
收藏
页码:25077 / 25089
页数:13
相关论文
共 50 条
  • [21] Multi-agent Collaborative Low-carbon Economic Dispatch in Integrated Energy System Considering Electric Vehicles
    Wu J.
    Zhang Q.
    Huang Y.
    Wu X.
    Li C.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (12): : 36 - 46
  • [22] Two-stage low-carbon economic dispatch of an integrated energy system considering flexible decoupling of electricity and heat on sides of source and load
    Yang, Lijun
    Gao, Yejin
    Zhang, Pei
    Tan, Xiaolin
    An, Jiakun
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 40
  • [23] Low-carbon economic dispatch of regional integrated energy system based on carbon-oxygen cycle
    Wang, Rutian
    Wen, Xiangyun
    Wang, Xiuyun
    Fu, Yanbo
    Zhao, Yanfeng
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [24] Modeling and optimal dispatch of a carbon-cycle integrated energy system for low-carbon and economic operation
    Zhang, Guangming
    Wang, Wei
    Chen, Zhenyu
    Li, Ruilian
    Niu, Yuguang
    ENERGY, 2022, 240
  • [25] Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand
    Wang, Shouxiang
    Wang, Shaomin
    Zhao, Qianyu
    Dong, Shuai
    Li, Hao
    ENERGY, 2023, 269
  • [26] Low-carbon optimization scheduling for integrated energy system considering two-stage power-to-gas and carbon capture system
    Wu, Qunli
    Chen, Yunfeng
    Bai, Jiayi
    Guo, Huiling
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2025, 17 (01)
  • [27] An integrated demand response dispatch strategy for low-carbon energy supply park considering electricity-hydrogen-carbon coordination
    Bu, Feifei
    Wang, Shiqian
    Bai, Hongkun
    Wang, Yuanyuan
    Yu, Lifang
    Liu, Haoming
    ENERGY REPORTS, 2023, 9 : 1092 - 1101
  • [28] Source-load-storage Low-carbon Economic Dispatching Considering Coordinated Operation of Carbon Capture Unit and Hydrogen Energy Storage System
    Cui Y.
    Guan Y.
    Li J.
    Zhao Y.
    Tang Y.
    Zhong W.
    Dianwang Jishu/Power System Technology, 2024, 48 (06): : 2307 - 2316
  • [29] Economic dispatch analysis of regional Electricity-Gas system integrated with distributed gas injection
    He, Gui-Xiong
    Yan, Hua-guang
    Chen, Lei
    Tao, Wen-Quan
    ENERGY, 2020, 201 (201)
  • [30] Low-Carbon Economic Dispatch of Integrated Energy Systems Considering Full-Process Carbon Emission Tracking and Low Carbon Demand Response
    Zhang, Yumin
    Sun, Pengkai
    Ji, Xingquan
    Yang, Ming
    Ye, Pingfeng
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5417 - 5431