Low-Carbon Economic Dispatch of Integrated Electricity-Gas Energy System Considering Carbon Capture, Utilization and Storage

被引:15
作者
Liu, Xinghua [1 ]
Li, Xiang [1 ]
Tian, Jiaqiang [2 ]
Yang, Guoqing [1 ]
Wu, Huibao [3 ]
Ha, Rong [4 ]
Wang, Peng [5 ]
机构
[1] Xian Univ Technol, Sch Elect Engn, Xian 710048, Peoples R China
[2] Anhui Univ, Sch Elect Engn & Automat, Hefei 230039, Peoples R China
[3] State Grid Xian Elect Power Supply Co, Xian 710000, Peoples R China
[4] Xian Jinze Elect Technol Co Ltd, Xian 710100, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Carbon dioxide; Emissions trading; Power systems; Natural gas; Combustion; Biological system modeling; Mathematical models; Low-carbon electricity; integrated electricity-gas system (IEGS); economic dispatch; carbon capture; utilization and storage (CCUS); mixed integer linear programming (MILP); POWER; STRATEGY;
D O I
10.1109/ACCESS.2023.3255508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of modern industry, while improving people's living standards, the over-exploitation of coal, oil and natural gas has led to a shortage of fossil energy, global warming and an increasingly serious deterioration of the ecological environment. To mitigate the greenhouse effect caused by excessive carbon emissions, the vigorous development of integrated electricity-gas system (IEGS) dominated by clean energy is the future trend of sustainable development of energy systems. In this paper, a bi-level optimal scheduling model is proposed for an IEGS considering carbon capture, utilization and storage (CCUS), and the ladder carbon trading mechanism is introduced to convert carbon emissions into economic benefits. The upper model is an optimal distribution model of natural gas network, and the lower model is a day-ahead economic dispatch model of power system. Based on the Karush-Kuhn-Tucher (KKT) condition and strong duality theory of the lower model, the bi-level model is transformed into a mixed integer linear programming (MILP), which is solved by calling CPLEX through the Yalmip toolbox of the Matlab platform. Finally, the reasonableness and validity of the model are verified by three arithmetic simulations. The results show that the proposed bi-level model for low-carbon economic dispatch of IEGS considering CCUS can effectively reduce the operating costs and carbon emissions of the system.
引用
收藏
页码:25077 / 25089
页数:13
相关论文
共 50 条
  • [11] Low-Carbon Economic Dispatch Method for Integrated Energy System Considering Seasonal Carbon Flow Dynamic Balance
    Yan, Ning
    Ma, Guangchao
    Li, Xiangjun
    Guerrero, Josep M. M.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2023, 14 (01) : 576 - 586
  • [12] Low-Carbon Economic Dispatch of Integrated Energy Systems Considering Extended Carbon Emission Flow
    Zhang, Yumin
    Sun, Pengkai
    Ji, Xingquan
    Wen, Fushuan
    Yang, Ming
    Ye, Pingfeng
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2024, 12 (06) : 1798 - 1809
  • [13] Low-carbon economic dispatch strategy for renewable integrated power system incorporating carbon capture and storage technology
    Yu, Fei
    Chu, Xiaodong
    Sun, Donglei
    Liu, Xiaoming
    ENERGY REPORTS, 2022, 8 : 251 - 258
  • [14] Impact of Carbon Capture (Storage) and Carbon Tax on Economic Dispatch of an Integrated Energy System
    Tan, Zhizhou
    Lin, Boqiang
    JOURNAL OF GLOBAL INFORMATION MANAGEMENT, 2023, 31 (01) : 1 - 21
  • [15] Low-Carbon Economic Optimization of Integrated Energy System Considering Refined Utilization of Hydrogen Energy and Generalized Energy Storage
    Liu, Zifa
    Li, Chengchen
    ENERGIES, 2023, 16 (15)
  • [16] Low-carbon optimal scheduling of integrated energy system considering hydrogen energy storage, ammonia production and carbon capture
    Liang, Junpeng
    Zhang, Gaohang
    Li, Fengting
    Xie, Chao
    Wang, Ting
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (10): : 16 - 23
  • [17] Low-Carbon Economic Dispatch for Integrated Energy System Through the Dynamic Reward and Penalty Carbon Emission Pricing Mechanism
    Wu, Yingjun
    Shi, Zhanyu
    Lin, Zhiwei
    Zhao, Xiang
    Xue, Tao
    Shao, Junjie
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [18] Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies
    Chen Juanwei
    Yu Tao
    Xu Yue
    Cheng Xiaohua
    Yang Bo
    Zhen Baomin
    APPLIED ENERGY, 2019, 242 : 260 - 272
  • [19] Low-Carbon Economic Dispatch of Distribution Network with Carbon Capture Power Plant Considering Carbon Trading
    Ge, Yulin
    Niu, Chenhui
    Li, Dong
    Wang, Chong
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 637 - 642
  • [20] Low-carbon economic operation for integrated energy system considering carbon trading mechanism
    Sun, Peiran
    Hao, Xuejun
    Wang, Jun
    Shen, Di
    Tian, Lu
    ENERGY SCIENCE & ENGINEERING, 2021, 9 (11) : 2064 - 2078