Telomerase inhibition is an effective therapeutic strategy in TERT promoter-mutant glioblastoma models with low tumor volume

被引:23
作者
Aquilanti, Elisa [2 ,3 ,4 ]
Kageler, Lauren [4 ]
Watson, Jacqueline [4 ]
Baird, Duncan M. [5 ]
Jones, Rhiannon E. [5 ]
Hodges, Marie [5 ]
Szegletes, Zsofia M. [6 ]
Doench, John G. [6 ]
Strathdee, Craig A. [4 ]
Figueroa, Jose Ricardo Mc Faline [2 ]
Ligon, Keith L. [4 ,7 ]
Beck, Matthew [4 ]
Wen, Patrick Y. [2 ]
Meyerson, Matthew [1 ,3 ,4 ,8 ,9 ]
机构
[1] Dana Farber Canc Inst, 450 Brookline Ave, Boston, MA 02215 USA
[2] Dana Farber Canc Inst, Dept Med Oncol, Div Neuro Oncol, Boston, MA 02215 USA
[3] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02215 USA
[4] Broad Inst MIT & Harvard, Canc Program, Cambridge, MA USA
[5] Cardiff Univ, Sch Med, Div Canc & Genet, Cardiff, Wales
[6] Broad Inst MIT & Harvard, Genet Perturbat Platform, Cambridge, MA USA
[7] Brigham & Womens Hosp, Boston Childrens Hosp, Dana Farber Canc Inst, Dept Pathol, Boston, MA USA
[8] Dana Farber Canc Inst, Ctr Canc Genom, Boston, MA 02215 USA
[9] Harvard Med Sch, Dept Genet & Med, Boston, MA USA
关键词
Telomerase; glioblastoma; targeted therapy; adjuvant therapy; tumor burden; target validation; CELLS; GENE; TEMOZOLOMIDE; MUTATIONS; SEQUENCE;
D O I
10.1093/neuonc/noad024
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Glioblastoma is one of the most lethal forms of cancer, with 5-year survival rates of only 6%. Glioblastoma-targeted therapeutics have been challenging to develop due to significant inter- and intra-tumoral heterogeneity. Telomerase reverse transcriptase gene (TERT) promoter mutations are the most common known clonal oncogenic mutations in glioblastoma. Telomerase is therefore considered to be a promising therapeutic target against this tumor. However, an important limitation of this strategy is that cell death does not occur immediately after telomerase ablation, but rather after several cell divisions required to reach critically short telomeres. We, therefore, hypothesize that telomerase inhibition would only be effective in glioblastomas with low tumor burden. Methods We used CRISPR interference to knock down TERT expression in TERT promoter-mutant glioblastoma cell lines and patient-derived models. We then measured viability using serial proliferation assays. We also assessed for features of telomere crisis by measuring telomere length and chromatin bridge formation. Finally, we used a doxycycline-inducible CRISPR interference system to knock down TERT expression in vivo early and late in tumor development. Results Upon TERT inactivation, glioblastoma cells lose their proliferative ability over time and exhibit telomere shortening and chromatin bridge formation. In vivo, survival is only prolonged when TERT knockdown is induced shortly after tumor implantation, but not when the tumor burden is high. Conclusions Our results support the idea that telomerase inhibition would be most effective at treating glioblastomas with low tumor burden, for example in the adjuvant setting after surgical debulking and chemoradiation.
引用
收藏
页码:1275 / 1285
页数:11
相关论文
共 40 条
[1]   Cancer-specific loss of TERT activation sensitizes glioblastoma to DNA damage [J].
Amen, Alexandra M. ;
Fellmann, Christof ;
Soczek, Katarzyna M. ;
Ren, Shawn M. ;
Lew, Rachel J. ;
Knott, Gavin J. ;
Park, Jesslyn E. ;
McKinney, Andrew M. ;
Mancini, Andrew ;
Doudna, Jennifer A. ;
Costello, Joseph F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (13)
[2]   Telomere shortening and tumor formation by mouse cells lacking telomerase RNA [J].
Blasco, MA ;
Lee, HW ;
Hande, MP ;
Samper, E ;
Lansdorp, PM ;
DePinho, RA ;
Greider, CW .
CELL, 1997, 91 (01) :25-34
[3]   Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency [J].
Bouffet, Eric ;
Larouche, Valerie ;
Campbell, Brittany B. ;
Merico, Daniele ;
de Borja, Richard ;
Aronson, Melyssa ;
Durno, Carol ;
Krueger, Joerg ;
Cabric, Vanja ;
Ramaswamy, Vijay ;
Zhukova, Nataliya ;
Mason, Gary ;
Farah, Roula ;
Afzal, Samina ;
Yalon, Michal ;
Rechavi, Gideon ;
Magimairajan, Vanan ;
Walsh, Michael F. ;
Constantini, Shlomi ;
Dvir, Rina ;
Elhasid, Ronit ;
Reddy, Alyssa ;
Osborn, Michael ;
Sullivan, Michael ;
Hansford, Jordan ;
Dodgshun, Andrew ;
Klauber-Demore, Nancy ;
Peterson, Lindsay ;
Patel, Sunil ;
Lindhorst, Scott ;
Atkinson, Jeffrey ;
Cohen, Zane ;
Laframboise, Rachel ;
Dirks, Peter ;
Taylor, Michael ;
Malkin, David ;
Albrecht, Steffen ;
Dudley, Roy W. R. ;
Jabado, Nada ;
Hawkins, Cynthia E. ;
Shlien, Adam ;
Tabori, Uri .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (19) :2206-+
[4]   Resolving the phylogenetic origin of glioblastoma via multifocal genomic analysis of pre-treatment and treatment-resistant autopsy specimens [J].
Brastianos, Priscilla K. ;
Nayyar, Naema ;
Rosebrock, Daniel ;
Leshchiner, Ignaty ;
Gill, Corey M. ;
Livitz, Dimitri ;
Bertalan, Mia S. ;
D'Andrea, Megan ;
Hoang, Kaitlin ;
Aquilanti, Elisa ;
Chukwueke, Ugonma N. ;
Kaneb, Andrew ;
Chi, Andrew ;
Plotkin, Scott ;
Gerstner, Elizabeth R. ;
Frosch, Mathew P. ;
Suva, Mario L. ;
Cahill, Daniel P. ;
Getz, Gad ;
Batchelor, Tracy T. .
NPJ PRECISION ONCOLOGY, 2017, 1
[5]   The Somatic Genomic Landscape of Glioblastoma [J].
Brennan, Cameron W. ;
Verhaak, Roel G. W. ;
McKenna, Aaron ;
Campos, Benito ;
Noushmehr, Houtan ;
Salama, Sofie R. ;
Zheng, Siyuan ;
Chakravarty, Debyani ;
Sanborn, J. Zachary ;
Berman, Samuel H. ;
Beroukhim, Rameen ;
Bernard, Brady ;
Wu, Chang-Jiun ;
Genovese, Giannicola ;
Shmulevich, Ilya ;
Barnholtz-Sloan, Jill ;
Zou, Lihua ;
Vegesna, Rahulsimham ;
Shukla, Sachet A. ;
Ciriello, Giovanni ;
Yung, W. K. ;
Zhang, Wei ;
Sougnez, Carrie ;
Mikkelsen, Tom ;
Aldape, Kenneth ;
Bigner, Darell D. ;
Van Meir, Erwin G. ;
Prados, Michael ;
Sloan, Andrew ;
Black, Keith L. ;
Eschbacher, Jennifer ;
Finocchiaro, Gaetano ;
Friedman, William ;
Andrews, David W. ;
Guha, Abhijit ;
Iacocca, Mary ;
O'Neill, Brian P. ;
Foltz, Greg ;
Myers, Jerome ;
Weisenberger, Daniel J. ;
Penny, Robert ;
Kucherlapati, Raju ;
Perou, Charles M. ;
Hayes, D. Neil ;
Gibbs, Richard ;
Marra, Marco ;
Mills, Gordon B. ;
Lander, Eric ;
Spellman, Paul ;
Wilson, Richard .
CELL, 2013, 155 (02) :462-477
[6]   p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis [J].
Chin, L ;
Artandi, SE ;
Shen, Q ;
Tam, A ;
Lee, SL ;
Gottlieb, GJ ;
Greider, CW ;
DePinho, RA .
CELL, 1999, 97 (04) :527-538
[7]   A DNA damage checkpoint response in telomere-initiated senescence [J].
di Fagagna, FD ;
Reaper, PM ;
Clay-Farrace, L ;
Fiegler, H ;
Carr, P ;
von Zglinicki, T ;
Saretzki, G ;
Carter, NP ;
Jackson, SP .
NATURE, 2003, 426 (6963) :194-198
[8]   EGFR Variant Heterogeneity in Glioblastoma Resolved through Single-Nucleus Sequencing [J].
Francis, Joshua M. ;
Zhang, Cheng-Zhong ;
Maire, Cecile L. ;
Jung, Joonil ;
Manzo, Veronica E. ;
Adalsteinsson, Viktor A. ;
Homer, Heather ;
Haidar, Sam ;
Blumenstiel, Brendan ;
Pedamallu, Chandra Sekhar ;
Ligon, Azra H. ;
Love, J. Christopher ;
Meyerson, Matthew ;
Ligon, Keith L. .
CANCER DISCOVERY, 2014, 4 (08) :956-971
[9]   A TELOMERIC SEQUENCE IN THE RNA OF TETRAHYMENA TELOMERASE REQUIRED FOR TELOMERE REPEAT SYNTHESIS [J].
GREIDER, CW ;
BLACKBURN, EH .
NATURE, 1989, 337 (6205) :331-337
[10]   Inhibition of telomerase limits the growth of human cancer cells [J].
Hahn, WC ;
Stewart, SA ;
Brooks, MW ;
York, SG ;
Eaton, E ;
Kurachi, A ;
Beijersbergen, RL ;
Knoll, JHM ;
Meyerson, M ;
Weinberg, RA .
NATURE MEDICINE, 1999, 5 (10) :1164-1170