On Variable-Order Fractional Discrete Neural Networks: Existence, Uniqueness and Stability

被引:14
|
作者
Almatroud, Othman Abdullah [1 ]
Hioual, Amel [2 ]
Ouannas, Adel [3 ]
Sawalha, Mohammed Mossa [1 ]
Alshammari, Saleh [1 ]
Alshammari, Mohammad [1 ]
机构
[1] Univ Hail, Fac Sci, Dept Math, Hail 81451, Saudi Arabia
[2] Univ Larbi Ben Mhidi, Lab Dynam Syst & Control, Oum El Bouaghi 04000, Algeria
[3] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi 04000, Algeria
关键词
discrete fractional variable-order neural networks; discrete nabla variable-orde fractional operators; Banach fixed point theorem; uniform stability; DERIVATIVES;
D O I
10.3390/fractalfract7020118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given the recent advances regarding the studies of discrete fractional calculus, and the fact that the dynamics of discrete-time neural networks in fractional variable-order cases have not been sufficiently documented, herein, we consider a novel class of discrete-time fractional-order neural networks using discrete nabla operator of variable-order. An adequate criterion for the existence of the solution in addition to its uniqueness for such systems is provided with the use of Banach fixed point technique. Moreover, the uniform stability is investigated. We provide at the end two numerical simulations illustrating the relevance of the aforementioned results.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Existence and Uniqueness of Solutions for Variable-Order Fractional Differential Equations with Antiperiodic Fractional Boundary Conditions
    Wang, Fang
    Liu, Lei
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [2] Variable-Order Fractional Linear Systems with Distributed Delays-Existence, Uniqueness and Integral Representation of the Solutions
    Kiskinov, Hristo
    Milev, Mariyan
    Petkova, Milena
    Zahariev, Andrey
    FRACTAL AND FRACTIONAL, 2024, 8 (03)
  • [3] Existence and Stability of a Caputo Variable-Order Boundary Value Problem
    Benkerrouche, Amar
    Souid, Mohammed Said
    Chandok, Sumit
    Hakem, Ali
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [4] Discrete Chebyshev polynomials for nonsingular variable-order fractional KdV Burgers' equation
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    Cattani, Carlo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 2158 - 2170
  • [5] On variable-order fractional linear viscoelasticity
    Giusti, Andrea
    Colombaro, Ivano
    Garra, Roberto
    Garrappa, Roberto
    Mentrelli, Andrea
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1564 - 1578
  • [6] New solvability and stability results for variable-order fractional initial value problem
    Abdelhamid, H.
    Souid, M. S.
    Alzabut, J.
    JOURNAL OF ANALYSIS, 2024, 32 (03) : 1877 - 1893
  • [7] Variable-order fractional calculus: A change of perspective
    Garrappa, Roberto
    Giusti, Andrea
    Mainardi, Francesco
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [8] On multistep tumor growth models of fractional variable-order
    Valentim, Carlos A.
    Rabi, Jose A.
    David, Sergio A.
    Tenreiro Machado, Jose A.
    BIOSYSTEMS, 2021, 199
  • [9] Analysis and discretization of a variable-order fractional wave equation
    Zheng, Xiangcheng
    Wang, Hong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 104
  • [10] Existence, uniqueness, Ulam-Hyers stability and numerical simulation of solutions for variable order fractional differential equations in fluid mechanics
    Derakhshan, M. H.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 403 - 429