Exotic Photonic Spin Hall Effect from a Chiral Interface

被引:27
作者
Sheng, Lijuan [1 ,2 ]
Zhou, Xinxing [1 ]
Zhong, Yuhan [3 ,4 ]
Zhang, Xinyan [3 ,4 ]
Chen, Yu [5 ]
Zhang, Zhiyou [2 ]
Chen, Hongsheng [3 ,4 ]
Lin, Xiao [3 ,4 ]
机构
[1] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Sch Phys & Elect, Key Lab Low Dimens Quantum Struct & Quantum Contro, Changsha 410081, Peoples R China
[2] Sichuan Univ, Coll Phys, Chengdu 610064, Peoples R China
[3] Zhejiang Univ, Coll Informat Sci & Elect Engn, Interdisciplinary Ctr Quantum Informat, ZJU Hangzhou Global Sci & Technol Innovat Ctr,Stat, Hangzhou 310027, Peoples R China
[4] Zhejiang Univ, Electromagnet Acad, Int Joint Innovat Ctr, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Haining 314400, Peoples R China
[5] Shenzhen Univ, Inst Microscale Optoelect, Engn Technol Res Ctr 2D Mat Informat Funct Devices, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
metamaterials; photonic spin Hall effect; spin-orbit interaction of light; TRANSITION;
D O I
10.1002/lpor.202200534
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The photonic spin Hall effect provides a quantitative way to characterize the spin-orbit interaction of light and enables many applications, such as the precise metrology, since this effect is featured with a spin-dependent transverse shift of the light beam. This transverse shift is generally nonzero during the reflection/transmission process, and it is sensitive to the polarization and the incident angle of the light beam. By contrast, here it is revealed that for the transmitted light, the transverse shift can be always zero and polarization-independent, irrespective of the incident angle. The underlying mechanism is that the conversion between the spin and orbit angular momenta of light is fully suppressed during the transmission process. Such an exotic photonic spin Hall effect occurs, if tpp=tss${t<^>{{\rm{pp}}}} = {t<^>{{\rm{ss}}}}$, tps=-tsp${t<^>{{\rm{ps}}}} = - {t<^>{{\rm{sp}}}}$, and theta t=theta i${\theta _t} = {\theta _i}$, where t stands for the transmission coefficient and its first (second) superscript represents the polarization of the transmitted (incident) light, and theta t${\theta _t}$ (theta i${\theta _i}$) is the transmitted (incident) angle. These transmission conditions are achievable, e.g., by exploiting an interface only with a chiral surface conductivity. Similarly, a polarization-independent photonic spin Hall effect is revealed for the reflected light.
引用
收藏
页数:9
相关论文
共 55 条
[31]   Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection [J].
Luo, Hailu ;
Zhou, Xinxing ;
Shu, Weixing ;
Wen, Shuangchun ;
Fan, Dianyuan .
PHYSICAL REVIEW A, 2011, 84 (04)
[32]   Enhancing or suppressing the spin Hall effect of light in layered nanostructures [J].
Luo, Hailu ;
Ling, Xiaohui ;
Zhou, Xinxing ;
Shu, Weixing ;
Wen, Shuangchun ;
Fan, Dianyuan .
PHYSICAL REVIEW A, 2011, 84 (03)
[33]   Disorder-induced optical transition from spin Hall to random Rashba effect [J].
Maguid, Elhanan ;
Yannai, Michael ;
Faerman, Arkady ;
Yulevich, Igor ;
Kleiner, Vladimir ;
Hasman, Erez .
SCIENCE, 2017, 358 (6369) :1411-+
[34]   Ultrafast optical imaging of the spin Hall effect of light in semiconductors [J].
Menard, Jean-Michel ;
Mattacchione, Adam E. ;
van Driel, Henry M. ;
Hautmann, Christine ;
Betz, Markus .
PHYSICAL REVIEW B, 2010, 82 (04)
[35]   Weak Measurement Enhanced Spin Hall Effect of Light for Particle Displacement Sensing [J].
Neugebauer, Martin ;
Nechayev, Sergey ;
Vorndran, Martin ;
Leuchs, Gerd ;
Banzer, Peter .
NANO LETTERS, 2019, 19 (01) :422-425
[36]   Hall effect of light [J].
Onoda, M ;
Murakami, S ;
Nagaosa, N .
PHYSICAL REVIEW LETTERS, 2004, 93 (08) :083901-1
[37]   Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal [J].
Rong, Kexiu ;
Wang, Bo ;
Reuven, Avi ;
Maguid, Elhanan ;
Cohn, Bar ;
Kleiner, Vladimir ;
Katznelson, Shaul ;
Koren, Elad ;
Hasman, Erez .
NATURE NANOTECHNOLOGY, 2020, 15 (11) :927-+
[38]   Rashba valleys and quantum Hall states in few-layer black arsenic [J].
Sheng, Feng ;
Hua, Chenqiang ;
Cheng, Man ;
Hu, Jie ;
Sun, Xikang ;
Tao, Qian ;
Lu, Hengzhe ;
Lu, Yunhao ;
Zhong, Mianzeng ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Xia, Qinglin ;
Xu, Zhu-An ;
Zheng, Yi .
NATURE, 2021, 593 (7857) :56-+
[39]   Spin-Optical Metamaterial Route to Spin-Controlled Photonics [J].
Shitrit, Nir ;
Yulevich, Igor ;
Maguid, Elhanan ;
Ozeri, Dror ;
Veksler, Dekel ;
Kleiner, Vladimir ;
Hasman, Erez .
SCIENCE, 2013, 340 (6133) :724-726
[40]   Fundamentals of Lossless, Reciprocal Bianisotropic Metasurface Design [J].
Szymanski, Luke ;
Raeker, Brian O. ;
Lin, Chun-Wen ;
Grbic, Anthony .
PHOTONICS, 2021, 8 (06)