Single-cell gene regulatory network prediction by explainable AI

被引:22
|
作者
Keyl, Philipp [1 ,2 ,3 ]
Bischoff, Philip [1 ,2 ,3 ,4 ,5 ]
Dernbach, Gabriel [1 ,2 ,3 ,6 ]
Bockmayr, Michael [1 ,2 ,3 ,7 ,8 ]
Fritz, Rebecca [1 ,2 ,3 ]
Horst, David [1 ,2 ,3 ,5 ]
Bluethgen, Nils [1 ,2 ,3 ,9 ]
Montavon, Gregoire [6 ,10 ]
Mueller, Klaus-Robert [6 ,10 ,11 ,12 ]
Klauschen, Frederick [1 ,2 ,3 ,5 ,6 ,13 ,14 ]
机构
[1] Charite Univ Med Berlin, Inst Pathol, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Charitepl 1, D-10117 Berlin, Germany
[3] Humboldt Univ, Charitepl 1, D-10117 Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, Anna Louisa Karsch Str 2, D-10178 Berlin, Germany
[5] German Canc Res Ctr, German Canc Consortium DKTK, Berlin Partner Site, Berlin, Germany
[6] BIFOLD Berlin Inst Fdn Learning & Data, Berlin, Germany
[7] Univ Med Ctr Hamburg Eppendorf, Dept Pediat Hematol & Oncolog, Martinistr 52, D-20246 Hamburg, Germany
[8] Univ Med Ctr Hamburg Eppendorf, Mildred Scheel Canc Career Ctr HaTriCS4, Martinistr 52, D-20246 Hamburg, Germany
[9] Humboldt Univ, Free Univ Berlin, Inst Biol, Unter Linden 6, D-10099 Berlin, Germany
[10] Tech Univ Berlin, Machine Learning Grp, Marchstr 23, D-10587 Berlin, Germany
[11] Korea Univ, Dept Artificial Intelligence, Seoul 136713, South Korea
[12] Max Planck Inst Informat, Stuhlsatzenhausweg 4, D-66123 Saarbrucken, Germany
[13] Ludwig Maximilians Univ Munchen, Inst Pathol, Thalkirchner Str 36, D-80337 Munich, Germany
[14] German Canc Res Ctr, German Canc Consortium DKTK, Munich Partner Site, Munich, Germany
关键词
CANCER; HETEROGENEITY; EXPRESSION; MUTATIONS;
D O I
10.1093/nar/gkac1212
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.
引用
收藏
页码:E20 / E20
页数:14
相关论文
共 50 条
  • [41] Common and specific gene regulatory programs in zebrafish caudal fin regeneration at single-cell resolution
    Chen, Yujie
    Hou, Yiran
    Zeng, Qinglin
    Wang, Irene
    Shang, Meiru
    Shin, Kwangdeok
    Hemauer, Christopher
    Xing, Xiaoyun
    Kang, Junsu
    Zhao, Guoyan
    Wang, Ting
    GENOME RESEARCH, 2025, 35 (01) : 202 - 218
  • [42] Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
    Ocone, Andrea
    Haghverdi, Laleh
    Mueller, Nikola S.
    Theis, Fabian J.
    BIOINFORMATICS, 2015, 31 (12) : 89 - 96
  • [43] Cell-specific gene association network construction from single-cell RNA sequence
    Azim, Riasat
    Wang, Shulin
    CELL CYCLE, 2021, 20 (21) : 2248 - 2263
  • [44] Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution
    Herring, Charles A.
    Simmons, Rebecca K.
    Freytag, Saskia
    Poppe, Daniel
    Moffet, Joel J. D.
    Pflueger, Jahnvi
    Buckberry, Sam
    Vargas-Landin, Dulce B.
    Clement, Olivier
    Echeverria, Enrique Goni
    Sutton, Gavin J.
    Alvarez-Franco, Alba
    Hou, Rui
    Pflueger, Christian
    McDonald, Kerrie
    Polo, Jose M.
    Forrest, Alistair R. R.
    Nowak, Anna K.
    Voineagu, Irina
    Martelotto, Luciano
    Lister, Ryan
    CELL, 2022, 185 (23) : 4428 - +
  • [45] Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification
    Cao, Shanni
    Zhao, Xue
    Li, Zhuojin
    Yu, Ranran
    Li, Yuqi
    Zhou, Xinkai
    Yan, Wenhao
    Chen, Dijun
    He, Chao
    PLANT DIVERSITY, 2024, 46 (03) : 372 - 385
  • [46] Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks
    Rubin, Adam J.
    Parker, Kevin R.
    Satpathy, Ansuman T.
    Qi, Yanyan
    Wu, Beijing
    Ong, Alvin J.
    Mumbach, Maxwell R.
    Ji, Andrew L.
    Kim, Daniel S.
    Cho, Seung Woo
    Zarnegar, Brian J.
    Greenleaf, William J.
    Chang, Howard Y.
    Khavari, Paul A.
    CELL, 2019, 176 (1-2) : 361 - +
  • [47] Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution
    Kang, Joyce B.
    Shen, Amber Z.
    Gurajala, Saisriram
    Nathan, Aparna
    Rumker, Laurie
    Aguiar, Vitor R. C.
    Valencia, Cristian
    Lagattuta, Kaitlyn A.
    Zhang, Fan
    Jonsson, Anna Helena
    Yazar, Seyhan
    Alquicira-Hernandez, Jose
    Khalili, Hamed
    Ananthakrishnan, Ashwin N.
    Jagadeesh, Karthik
    Dey, Kushal
    Albrecht, Jennifer
    Apruzzese, William
    Banda, Nirmal
    Barnas, Jennifer L.
    Bathon, Joan M.
    Ben-Artzi, Ami
    Boyce, Brendan F.
    Boyle, David L.
    Bridges, S. Louis
    Bykerk, Vivian P.
    Campbell, Debbie
    Ceponis, Arnold
    Cordle, Andrew
    Deane, Kevin D.
    Firestein, Gary S.
    James, Judith A.
    Weinand, Kathryn
    Xavier, Ramnik J.
    Rao, Deepak A.
    Brenner, Michael B.
    Gutierrez-Arcelus, Maria
    Luo, Yang
    Sakaue, Saori
    Raychaudhuri, Soumya
    NATURE GENETICS, 2023, 55 (12) : 2255 - 2268
  • [48] Machine Learning of Stem Cell Identities From Single-Cell Expression Data via Regulatory Network Archetypes
    Stumpf, Patrick S.
    MacArthur, Ben D.
    FRONTIERS IN GENETICS, 2019, 10
  • [49] Advanced methods for gene network identification and noise decomposition from single-cell data
    Fang, Zhou
    Gupta, Ankit
    Kumar, Sant
    Khammash, Mustafa
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [50] Single-cell gene regulation network inference by large-scale data integration
    Dong, Xin
    Tang, Ke
    Xu, Yunfan
    Wei, Hailin
    Han, Tong
    Wang, Chenfei
    NUCLEIC ACIDS RESEARCH, 2022, 50 (21) : E126