Single-cell gene regulatory network prediction by explainable AI

被引:22
|
作者
Keyl, Philipp [1 ,2 ,3 ]
Bischoff, Philip [1 ,2 ,3 ,4 ,5 ]
Dernbach, Gabriel [1 ,2 ,3 ,6 ]
Bockmayr, Michael [1 ,2 ,3 ,7 ,8 ]
Fritz, Rebecca [1 ,2 ,3 ]
Horst, David [1 ,2 ,3 ,5 ]
Bluethgen, Nils [1 ,2 ,3 ,9 ]
Montavon, Gregoire [6 ,10 ]
Mueller, Klaus-Robert [6 ,10 ,11 ,12 ]
Klauschen, Frederick [1 ,2 ,3 ,5 ,6 ,13 ,14 ]
机构
[1] Charite Univ Med Berlin, Inst Pathol, Charitepl 1, D-10117 Berlin, Germany
[2] Free Univ Berlin, Charitepl 1, D-10117 Berlin, Germany
[3] Humboldt Univ, Charitepl 1, D-10117 Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, Anna Louisa Karsch Str 2, D-10178 Berlin, Germany
[5] German Canc Res Ctr, German Canc Consortium DKTK, Berlin Partner Site, Berlin, Germany
[6] BIFOLD Berlin Inst Fdn Learning & Data, Berlin, Germany
[7] Univ Med Ctr Hamburg Eppendorf, Dept Pediat Hematol & Oncolog, Martinistr 52, D-20246 Hamburg, Germany
[8] Univ Med Ctr Hamburg Eppendorf, Mildred Scheel Canc Career Ctr HaTriCS4, Martinistr 52, D-20246 Hamburg, Germany
[9] Humboldt Univ, Free Univ Berlin, Inst Biol, Unter Linden 6, D-10099 Berlin, Germany
[10] Tech Univ Berlin, Machine Learning Grp, Marchstr 23, D-10587 Berlin, Germany
[11] Korea Univ, Dept Artificial Intelligence, Seoul 136713, South Korea
[12] Max Planck Inst Informat, Stuhlsatzenhausweg 4, D-66123 Saarbrucken, Germany
[13] Ludwig Maximilians Univ Munchen, Inst Pathol, Thalkirchner Str 36, D-80337 Munich, Germany
[14] German Canc Res Ctr, German Canc Consortium DKTK, Munich Partner Site, Munich, Germany
关键词
CANCER; HETEROGENEITY; EXPRESSION; MUTATIONS;
D O I
10.1093/nar/gkac1212
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.
引用
收藏
页码:E20 / E20
页数:14
相关论文
共 50 条
  • [21] GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks
    Shrivastava, Harsh
    Zhang, Xiuwei
    Song, Le
    Aluru, Srinivas
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (01) : 27 - 44
  • [22] Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks
    Yang, Yongjian
    Li, Guanxun
    Zhong, Yan
    Xu, Qian
    Chen, Bo-Jia
    Lin, Yu-Te
    Chapkin, Robert S.
    Cai, James J.
    NUCLEIC ACIDS RESEARCH, 2023, 51 (13) : 6578 - 6592
  • [23] Optimal Gene Filtering for Single-Cell data (OGFSC)-a gene filtering algorithm for single-cell RNA-seq data
    Hao, Jie
    Cao, Wei
    Huang, Jian
    Zou, Xin
    Han, Ze-Guang
    BIOINFORMATICS, 2019, 35 (15) : 2602 - 2609
  • [24] Single-cell and spatial multiomic inference of gene regulatory networks using SCRIPro
    Chang, Zhanhe
    Xu, Yunfan
    Dong, Xin
    Gao, Yawei
    Wang, Chenfei
    BIOINFORMATICS, 2024, 40 (07)
  • [25] SCENIC plus : single-cell multiomic inference of enhancers and gene regulatory networks
    Gonzalez-Blas, Carmen Bravo
    De Winter, Seppe
    Hulselmans, Gert
    Hecker, Nikolai
    Matetovici, Irina
    Christiaens, Valerie
    Poovathingal, Suresh
    Wouters, Jasper
    Aibar, Sara
    Aerts, Stein
    NATURE METHODS, 2023, 20 (09) : 1355 - +
  • [26] Reconstructing blood stem cell regulatory network models from single-cell molecular profiles
    Hamey, Fiona K.
    Nestorowa, Sonia
    Kinston, Sarah J.
    Kent, David G.
    Wilson, Nicola K.
    Gottgens, Berthold
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (23) : 5822 - 5829
  • [27] Clinical Outcome Prediction Using Single-Cell Data
    Pouyan, Maziyar Baran
    Jindal, Vasu
    Nourani, Mehrdad
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2016, 10 (05) : 1012 - 1022
  • [28] Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR
    Zemmour, David
    Zilionis, Rapolas
    Kiner, Evgeny
    Klein, Allon M.
    Mathis, Diane
    Benoist, Christophe
    NATURE IMMUNOLOGY, 2018, 19 (03) : 291 - +
  • [29] GENE REGULATORY EFFECTS INFERENCE FOR CELL FATE DETERMINATION BASED ON SINGLE-CELL RESOLUTION DATA
    Huang, Xiao-Tai
    Chan, Leanne L. H.
    Zhao, Zhong-Ying
    Yan, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL. 1, 2015, : 283 - 288
  • [30] Inferring gene regulatory networks from single-cell transcriptomics based on graph embedding
    Gan, Yanglan
    Yu, Jiacheng
    Xu, Guangwei
    Yan, Cairong
    Zou, Guobing
    BIOINFORMATICS, 2024, 40 (05)