An algorithm of nonnegative matrix factorization under structure constraints for image clustering

被引:0
|
作者
Jia, Mengxue [1 ,2 ]
Li, Xiangli [1 ,3 ,4 ]
Zhang, Ying [1 ,2 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Data Anal & Computat, Guilin 541004, Guangxi, Peoples R China
[4] Ctr Appl Math Guangxi GUET, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Image clustering; Nonnegative matrix factorization; Cosine measure; !segment]l[!segment](2) norm; P-HARMONIC FLOWS;
D O I
10.1007/s00521-022-08136-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonnegative matrix factorization (NMF) is a crucial method for image clustering. However, NMF may obtain low accurate clustering results because the factorization results contain no data structure information. In this paper, we propose an algorithm of nonnegative matrix factorization under structure constraints (SNMF). The factorization results of SNMF could maintain data global and local structure information simultaneously. In SNMF, the global structure information is captured by the cosine measure under the l(2) norm constraints. Meanwhile, l(2) norm constraints are utilized to get more discriminant data representations. A graph regularization term is employed to maintain the local structure. Effective updating rules are given in this paper. Moreover, the effects of different normalizations on similarities are investigated through experiments. On real datasets, the numerical results confirm the effectiveness of the SNMF.
引用
收藏
页码:7891 / 7907
页数:17
相关论文
共 50 条
  • [11] Image Completion with Nonnegative Matrix Factorization Under Separability Assumption
    Sadowski, Tomasz
    Zdunek, Rafal
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 116 - 126
  • [12] Distributional Clustering Using Nonnegative Matrix Factorization
    Zhu, Zhenfeng
    Ye, Yangdong
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 4705 - 4711
  • [13] Document clustering using nonnegative matrix factorization/
    Shahnaz, F
    Berry, MW
    Pauca, VP
    Plemmons, RJ
    INFORMATION PROCESSING & MANAGEMENT, 2006, 42 (02) : 373 - 386
  • [14] Efficient algorithms of box-constrained Nonnegative Matrix Factorization and its applications in image clustering
    Guo, Jie
    Li, Ting
    Wan, Zhong
    Li, Jiaoyan
    Xiao, Yamei
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 176 - 188
  • [15] Label Propagated Nonnegative Matrix Factorization for Clustering
    Lan, Long
    Liu, Tongliang
    Zhang, Xiang
    Xu, Chuanfu
    Luo, Zhigang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 340 - 351
  • [16] Adaptive graph-based discriminative nonnegative matrix factorization for image clustering
    Zhang, Ying
    Li, Xiangli
    Jia, Mengxue
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 95
  • [17] Dual graph-regularized Constrained Nonnegative Matrix Factorization for Image Clustering
    Sun, Jing
    Cai, Xibiao
    Sun, Fuming
    Hong, Richang
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (05): : 2607 - 2627
  • [18] Nonnegative Matrix Factorization for Document Clustering: A Survey
    Hosseini-Asl, Ehsan
    Zurada, Jacek M.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II, 2014, 8468 : 726 - 737
  • [19] A nonnegative matrix factorization framework for semi-supervised document clustering with dual constraints
    Huifang Ma
    Weizhong Zhao
    Zhongzhi Shi
    Knowledge and Information Systems, 2013, 36 : 629 - 651
  • [20] A nonnegative matrix factorization framework for semi-supervised document clustering with dual constraints
    Ma, Huifang
    Zhao, Weizhong
    Shi, Zhongzhi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 36 (03) : 629 - 651