A Survey on Data-driven Software Vulnerability Assessment and Prioritization
被引:22
|
作者:
Le, Triet H. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Adelaide, CREST Ctr Res Engn Software Technol, Adelaide, SA, AustraliaUniv Adelaide, CREST Ctr Res Engn Software Technol, Adelaide, SA, Australia
Le, Triet H. M.
[1
]
Chen, Huaming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Adelaide, CREST Ctr Res Engn Software Technol, Adelaide, SA, AustraliaUniv Adelaide, CREST Ctr Res Engn Software Technol, Adelaide, SA, Australia
Chen, Huaming
[1
]
Babar, M. Ali
论文数: 0引用数: 0
h-index: 0
机构:
Univ Adelaide, CREST Ctr Res Engn Software Technol, Adelaide, SA, Australia
Cyber Secur Cooperat Res Ctr, Joondalup, AustraliaUniv Adelaide, CREST Ctr Res Engn Software Technol, Adelaide, SA, Australia
Babar, M. Ali
[1
,2
]
机构:
[1] Univ Adelaide, CREST Ctr Res Engn Software Technol, Adelaide, SA, Australia
[2] Cyber Secur Cooperat Res Ctr, Joondalup, Australia
Software Vulnerabilities (SVs) are increasing in complexity and scale, posing great security risks to many software systems. Given the limited resources in practice, SV assessment and prioritization help practitioners devise optimal SV mitigation plans based on various SV characteristics. The surges in SV data sources and data-driven techniques such as Machine Learning and Deep Learning have taken SV assessment and prioritization to the next level. Our survey provides a taxonomy of the past research efforts and highlights the best practices for data-driven SV assessment and prioritization. We also discuss the current limitations and propose potential solutions to address such issues.
机构:
Univ Colorado, Dept Geog, Boulder, CO 80309 USA
Univ Colorado, Inst Behav Sci, Boulder, CO 80309 USAUniv Colorado, Dept Geog, Boulder, CO 80309 USA
Spielman, Seth E.
Folch, David C.
论文数: 0引用数: 0
h-index: 0
机构:
Florida State Univ, Dept Geog, Tallahassee, FL 32306 USAUniv Colorado, Dept Geog, Boulder, CO 80309 USA