The Opportunity of Negative Capacitance Behavior in Flash Memory for High-Density and Energy-Efficient In-Memory Computing Applications

被引:8
作者
Kim, Taeho [1 ]
Kim, Giuk [1 ]
Lee, Young Kyu [2 ]
Ko, Dong Han [2 ]
Hwang, Junghyeon [1 ]
Lee, Sangho [1 ]
Shin, Hunbeom [1 ]
Jeong, Yeongseok [1 ]
Jung, Seong-Ook [2 ]
Jeon, Sanghun [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[2] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
charge trap flash memories; ferroelectrics; HfO2; in-memory computing; negative capacitance; FILMS;
D O I
10.1002/adfm.202208525
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flash memory is a promising candidate for use in in-memory computing (IMC) owing to its multistate operations, high on/off ratio, non-volatility, and the maturity of device technologies. However, its high operation voltage, slow operation speed, and string array structure severely degrade the energy efficiency of IMC. To address these challenges, a novel negative capacitance-flash (NC-flash) memory-based IMC architecture is proposed. To stabilize and utilize the negative capacitance (NC) effect, a HfO2-based reversible single-domain ferroelectric (RSFE) layer is developed by coupling the flexoelectric and surface effects, which generates a large internal field and surface polarization pinning. Furthermore, NC-flash memory is demonstrated for the first time by introducing a RSFE and dielectric heterostructure layer in which the NC effect is stabilized as a blocking layer. Consequently, an energy-efficient and high-throughput IMC is successfully demonstrated using an AND flash-like cell arrangement and source-follower/charge-sharing vector-matrix multiplication operation on a high-performance NC-flash memory.
引用
收藏
页数:9
相关论文
共 39 条
  • [1] Ammar, 2021, NANO CONVERG, V8, P37
  • [2] Experimental Observation of Negative Capacitance in Ferroelectrics at Room Temperature
    Appleby, Daniel J. R.
    Ponon, Nikhil K.
    Kwa, Kelvin S. K.
    Zou, Bin
    Petrov, Peter K.
    Wang, Tianle
    Alford, Neil M.
    O'Neill, Anthony
    [J]. NANO LETTERS, 2014, 14 (07) : 3864 - 3868
  • [3] Low-power linear computation using nonlinear ferroelectric tunnel junction memristors
    Berdan, Radu
    Marukame, Takao
    Ota, Kensuke
    Yamaguchi, Marina
    Saitoh, Masumi
    Fujii, Shosuke
    Deguchi, Jun
    Nishi, Yoshifumi
    [J]. NATURE ELECTRONICS, 2020, 3 (05) : 259 - 266
  • [4] Ferroelectricity in hafnium oxide thin films
    Boescke, T. S.
    Mueller, J.
    Braeuhaus, D.
    Schroeder, U.
    Boettger, U.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (10)
  • [5] The flexoelectric effect in Al-doped hafnium oxide
    Celano, Umberto
    Popovici, Mihaela
    Florent, Karine
    Lavizzari, Simone
    Favia, Paola
    Paulussen, Kris
    Bender, Hugo
    di Piazza, Luca
    Van Houdt, Jan
    Vandervorst, Wilfried
    [J]. NANOSCALE, 2018, 10 (18) : 8471 - 8476
  • [6] Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation
    Choi, Hye Kyu
    Kim, Cheol-Hwi
    Lee, Sang Nam
    Kim, Tae-Hyung
    Oh, Byung-Keun
    [J]. NANO CONVERGENCE, 2021, 8 (01)
  • [7] Das D., SOLID STATE ELECT, V174
  • [8] Cointegration of single-transistor neurons and synapses by nanoscale CMOS fabrication for highly scalable neuromorphic hardware
    Han, Joon-Kyu
    Oh, Jungyeop
    Yun, Gyeong-Jun
    Yoo, Dongeun
    Kim, Myung-Su
    Yu, Ji-Man
    Choi, Sung-Yool
    Choi, Yang-Kyu
    [J]. SCIENCE ADVANCES, 2021, 7 (32)
  • [9] Performance Improvement in Charge-Trap Flash Memory Using Lanthanum-Based High-κ Blocking Oxide
    He, Wei
    Pu, Jing
    Chan, Daniel S. H.
    Cho, Byung Jin
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (11) : 2746 - 2751
  • [10] What's next for negative capacitance electronics?
    Hoffmann, Michael
    Slesazeck, Stefan
    Schroeder, Uwe
    Mikolajick, Thomas
    [J]. NATURE ELECTRONICS, 2020, 3 (09) : 504 - 506