Similarity-Based Resume Matching via Triplet Loss with BERT Models

被引:0
作者
Ozlu, O. Anil [1 ]
Orman, Gunce Keziban [2 ]
Danis, F. Serhan [2 ]
Turhan, Sultan N. [2 ]
Kara, K. Can [1 ]
Yucel, T. Arda
机构
[1] Kariyer Net Ar Ge, Istanbul, Turkiye
[2] Galatasaray Univ, Comp Engn Dept, Istanbul, Turkiye
来源
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3 | 2023年 / 544卷
关键词
Natural language processing; BERT; Document retrieval; Job recruitment; Triplet loss;
D O I
10.1007/978-3-031-16075-2_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic resume matching for the recruitment engines is an important task because of the vast volume and varying types of applicants. We propose a resume matching method to be used as a recommendation engine for recruiters. Our approach combines cutting-edge transformerbased natural language processing technology with the triplet loss, a training method originally developed for the computer vision domain. By treating the output embeddings of a transformer model similarly to those of a convolutional neural network, we develop a model for the document retrieval task. The paper also investigates a clustering based pretraining method before fine-tuning with the triplet loss. The method is applied on the data extracted from an online recruitment website, where real users actively create their own resumes. Measured by the precision at k score, the method yields an accuracy boost of %12 compared to a base model.
引用
收藏
页码:520 / 532
页数:13
相关论文
共 24 条
[1]   Semantic Search-by-Examples for Scientific Topic Corpus Expansion in Digital Libraries [J].
Al-Natsheh, Hussein T. ;
Martinet, Lucie ;
Muhlenbach, Fabrice ;
Rico, Fabien ;
Zighed, Djamel A. .
2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, :747-756
[2]  
Bhatia V., 2019, arXiv
[3]  
Cabrera-Diego L.A., 2015, P INT C DAT MIN DMIN, P99
[4]  
Ester M., 1996, P INT C KNOWL DISC D, P226, DOI DOI 10.5555/3001460.3001507
[5]  
Farber F., 2003, An automated recommendation approach to selection in personnel recruitment
[6]   Deep Image Retrieval: Learning Global Representations for Image Search [J].
Gordo, Albert ;
Almazan, Jon ;
Revaud, Jerome ;
Larlus, Diane .
COMPUTER VISION - ECCV 2016, PT VI, 2016, 9910 :241-257
[7]  
Gururangan S, 2020, Arxiv, DOI arXiv:2004.10964
[8]   Evaluating collaborative filtering recommender systems [J].
Herlocker, JL ;
Konstan, JA ;
Terveen, K ;
Riedl, JT .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :5-53
[9]  
Hermans A, 2017, Arxiv, DOI [arXiv:1703.07737, DOI 10.48550/ARXIV.1703.07737]
[10]  
Howard J, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P328