Fields of invariants for unipotent radicals of parabolic subgroups

被引:1
作者
Panov, Aleksandr N. [1 ]
机构
[1] West Chester Univ Penn, Dept Math Sci, W Chester, PA 19380 USA
关键词
Theory of invariants; parabolic subgroup; unipotent radical; determinant;
D O I
10.1080/03081087.2022.2107978
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to the problem of finding free generators in the fields of invariants for actions of unipotent groups on affine varieties. We consider the case when the unipotent group is the unipotent radical in an arbitrary parabolic subgroup in the reductive group of classical type GL(n), SL(r), O(n) or Sp(2n). In the explicit form, we present a system of free generators in the field of invariants for the action of the unipotent radical on the reductive group by conjugation.
引用
收藏
页码:2499 / 2512
页数:14
相关论文
共 7 条
[1]   THE INVARIANTS OF UNIPOTENT RADICALS OF PARABOLIC SUBGROUPS [J].
GROSSHANS, FD .
INVENTIONES MATHEMATICAE, 1983, 73 (01) :1-9
[2]   INVARIANTS OF CERTAIN GROUPS .1. [J].
MIYATA, T .
NAGOYA MATHEMATICAL JOURNAL, 1971, 41 (FEB) :69-&
[3]  
Panov AN., 2019, J MATH SCI-U TOKYO, V237, P245
[4]   Invariants of a maximal unipotent subgroup and equidimensionality [J].
Panyushev, Dmitri I. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (02) :149-161
[5]  
POMMERENING K, 1987, LECT NOTES MATH, V1278, P8
[6]  
Popov VL., 1995, LINEAR ALGEBRAIC GRO
[7]   The field of U-invariants of the adjoint representation of the group GL(n, K) [J].
Vyatkina, K. A. ;
Panov, A. N. .
MATHEMATICAL NOTES, 2013, 93 (1-2) :187-190