Transforming sentiment analysis for e-commerce product reviews: Hybrid deep learning model with an innovative term weighting and feature selection

被引:15
作者
Rasappan, Punithavathi [1 ]
Premkumar, Manoharan [2 ]
Sinha, Garima [3 ]
Chandrasekaran, Kumar [4 ]
机构
[1] M Kumarasamy Coll Engn, Dept Informat Technol, Karur 639113, Tamil Nadu, India
[2] Dayananda Sagar Coll Engn, Dept Elect & Elect Engn, Bangalore 560078, Karnataka, India
[3] Jain Univ, Sch Comp Sci & Engn, Bangalore 562112, Karnataka, India
[4] Karpagam Coll Engn, Dept Elect & Elect Engn, Coimbatore 641032, Tamil Nadu, India
关键词
Enhanced golden jackal algorithm; Grey wolf optimizer; Long short-term memory; Machine learning; Online shopping; Sentiment analysis; CONVOLUTIONAL NEURAL-NETWORK; OPTIMIZATION ALGORITHM; CNN; LSTM;
D O I
10.1016/j.ipm.2024.103654
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Improving user satisfaction by analyzing many user reviews found on e -commerce platforms is becoming increasingly significant in this modern world. However, accurately predicting sentiment polarities within these reviews remains challenging due to variable sequence lengths, textual orders, and complex logic within the content. This study introduces a new optimized Machine Learning (ML) algorithm named Enhanced Golden Jackal Optimizer -based Long Short -Term Memory (EGJO-LSTM) to perform Sentiment Analysis (SA) of e -commerce product reviews. This SA method comprises four critical stages: data collection, pre-processing, feature selection, feature extraction, and lastly, sentiment classification. The initial step involves utilizing a web scrapping tool to collate customer product reviews from various e -commerce websites. The collected data is subjected to a pre-processing phase to refine the scraped information. The preprocessed data then undergoes term weighting and feature selection processes by applying Logterm Frequency -based Modified Inverse Class Frequency (LF-MICF) and Improved Grey Wolf Optimizer (IGWO). In the final stage, the refined IGWO data is fed into the EGJO-LSTM model, which then classifies the sentiment of the shopper reviews into negative, positive, or neutral classes. Performance analysis was conducted using a prompt cloud dataset from Amazon.com, comparing the proposed classifier with state-of-the-art ML models. The metrics, such as precision, accuracy, recall and F1 -score, were used to compare the performance. The results demonstrate that the EGJO-LSTM outperforms other models in sentiment classification. The proposed strategy is 25% and 32% better than the traditional and hybrid methods in terms of precision and accuracy. Further observations showed that when using the recommended LF-MICF weighting method, the EGJO-LSTM surpassed the performance of the state-of-the-art methods.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] A Sentiment Analysis Hybrid Approach for Microblogging and E-Commerce Corpus
    Gao, Kai
    Su, Shu
    Wang, Jiu-shuo
    2015 7TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2014, : 634 - 639
  • [32] SAFER: Sentiment Analysis-Based FakE Review Detection in E-Commerce Using Deep Learning
    Baishya D.
    Deka J.J.
    Dey G.
    Singh P.K.
    SN Computer Science, 2021, 2 (6)
  • [33] Sentiment Analysis of E-Commerce Reviews Based on Long Short-Term Memory Networks with Dropout Layer and Optimization
    Chai, Zhen-hui
    Huang, Jun
    Chen, Li
    Hato, Fei
    Wang, Run
    20TH INT CONF ON UBIQUITOUS COMP AND COMMUNICAT (IUCC) / 20TH INT CONF ON COMP AND INFORMATION TECHNOLOGY (CIT) / 4TH INT CONF ON DATA SCIENCE AND COMPUTATIONAL INTELLIGENCE (DSCI) / 11TH INT CONF ON SMART COMPUTING, NETWORKING, AND SERV (SMARTCNS), 2021, : 369 - 374
  • [34] Sentiment Analysis Using E-Commerce Review Keyword-Generated Image with a Hybrid Machine Learning-Based Model
    Li, Jiawen
    Huang, Yuesheng
    Lu, Yayi
    Wang, Leijun
    Ren, Yongqi
    Chen, Rongjun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 1581 - 1599
  • [35] A Deep Learning Model for Student Sentiment Analysis on Course Reviews
    Huang, Shuqin
    Raga Jr, Rodolfo C.
    IEEE ACCESS, 2024, 12 : 136747 - 136758
  • [36] F_ MixBERT: Sentiment Analysis Model using Focal Loss for Imbalanced E-commerce Reviews
    Pang, Fengqian
    Chen, Xi
    Li, Letong
    Xu, Xin
    Xing, Zhiqiang
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2024, 18 (02): : 263 - 283
  • [37] E-commerce review sentiment score prediction considering misspelled words: a deep learning approach
    Jain, Sakshi
    Roy, Pradeep Kumar
    ELECTRONIC COMMERCE RESEARCH, 2024, 24 (03) : 1737 - 1761
  • [38] Cognitive Hybrid Deep Learning-based Multi-modal Sentiment Analysis for Online Product Reviews
    Perti, Ashwin
    Sinha, Amit
    Vidyarthi, Ankit
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2024, 23 (08)
  • [39] Sentiment Analysis With Ensemble Hybrid Deep Learning Model
    Tan, Kian Long
    Lee, Chin Poo
    Lim, Kian Ming
    Anbananthen, Kalaiarasi Sonai Muthu
    IEEE ACCESS, 2022, 10 : 103694 - 103704
  • [40] Deep Learning Analysis for Reviews in Arabic E-Commerce Sites to Detect Consumer Behavior towards Sustainability
    Hakami, Nada Ali
    Mahmoud, Hanan A. Hosni
    SUSTAINABILITY, 2022, 14 (19)