Fault diagnosis of tooth surface spalling based on variational mode decomposition and maximum correlation kurtosis method

被引:0
|
作者
Liu, Zhengyu [1 ,2 ]
Cheng, Zhenbang [1 ]
Xiong, Yangshou [3 ]
机构
[1] West Anhui Univ, Anhui Undergrowth Crop Intelligent Equipment Engn, Luan 237012, Peoples R China
[2] West Anhui Univ, Sch Elect & Informat Engn, Luan 237012, Peoples R China
[3] AnHui Key Lab Digit Design & Manufacture, Hefei 230009, Peoples R China
来源
ENGINEERING RESEARCH EXPRESS | 2024年 / 6卷 / 01期
关键词
fault diagnosis; tooth surface spalling; variational mode decomposition; maximum correlation kurtosis deconvolution;
D O I
10.1088/2631-8695/ad29a1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As the early fault features of tooth surface spalling are very weak and difficult to extract because of random noise and other types of signal interference, a method that combines maximum correlation kurtosis uncoiling and variational mode decomposition is proposed herein. First, a series of modes are obtained by variational mode decomposition, and the kurtosis criterion is applied to select the modes containing rich fault information for reconstruction and noise reduction. Second, the maximum correlation kurtosis deconvolution method is used to enhance the selected signals. Finally, the fault features are extracted by envelope demodulation of the reconstructed signal. The effectiveness of the proposed method is verified by analysis, and the different frequency components of the vibration signals of tooth surface spalling faults are shown to be separated accurately.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fault Diagnosis Method of Wind Turbine Bearing based on Variational Mode Decomposition and Spectrum Kurtosis
    Zhang, Ying
    Zhang, Yichi
    Zhang, Chao
    Yu, Hua
    Bai, Lu
    Hao, Jie
    Han, Yu
    Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016), 2016, 79 : 851 - 854
  • [2] Early Fault Diagnosis of Shaft Crack Based on Double Optimization Maximum Correlated Kurtosis Deconvolution and Variational Mode Decomposition
    Ma, Tongwei
    Zhang, Xiangfeng
    Jiang, Hong
    Wang, Kedian
    Xia, Lei
    Guan, Xiangheng
    IEEE ACCESS, 2021, 9 : 14971 - 14982
  • [3] Novel variational mode decomposition method for rotating machinery fault diagnosis based on weighted correlated kurtosis and salp swarm algorithm
    Ge C.
    Lu B.-C.
    Noise and Vibration Worldwide, 2023, 54 (7-8) : 360 - 377
  • [4] A New Compound Fault Feature Extraction Method Based on Multipoint Kurtosis and Variational Mode Decomposition
    Cai, Wenan
    Yang, Zhaojian
    Wang, Zhijian
    Wang, Yiliang
    ENTROPY, 2018, 20 (07):
  • [5] Bearing fault diagnosis based on adaptive variational mode decomposition
    Xue, Jun Zhou
    Lin, Tian Ran
    Xing, Jin Peng
    Ni, Chao
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [6] A dichotomy-based variational mode decomposition method for rotating machinery fault diagnosis
    Zheng, Xu
    Zhou, Quan
    Zho, Nan
    Liu, Ruijun
    Hao, Zhiyong
    Qiu, Yi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (01)
  • [7] Envelope demodulation based on variational mode decomposition for gear fault diagnosis
    An, Xueli
    Zeng, Hongtao
    Li, Chaoshun
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2017, 231 (04) : 864 - 870
  • [8] Gearbox fault diagnosis method based on convergent trend-guided variational mode decomposition
    Jiang X.-X.
    Song Q.-Y.
    Zhu Z.-K.
    Huang W.-G.
    Liu J.
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2022, 22 (01): : 177 - 189
  • [9] Fault Diagnosis of Bearing Based on Variational Mode Decomposition and Deep Learning
    Cui, Jianguo
    Tang, Shan
    Cui, Xiao
    Wang, Jinglin
    Yu, Mingyue
    Du, Wenyou
    Jiang, Liying
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 5413 - 5417
  • [10] Bearing fault diagnosis based on variational mode decomposition and stochastic resonance
    Zhang, Xin
    Liu, Huiyu
    Zhang, Heng
    Miao, Qiang
    2018 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2018,