Magnetic Laplace operator;
ground state solutions;
Nehari manifold;
asymptotic behavior;
NONLINEAR SCHRODINGER-EQUATIONS;
MULTI-BUMP SOLUTIONS;
SEMICLASSICAL SOLUTIONS;
MULTIPLICITY;
DECAY;
FIELD;
D O I:
10.11948/20230226
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we consider the following nonlinear magnetic Kirch-hoff Choquard type equation [a+b integral RN(|del Au|2+lambda V(x)|u|2)dx](-triangle Au+lambda V(x)u) =(I alpha & lowast;F(|u|))f(|u|)|u|u,inR(N), where u:R-N -> C,A:R-N -> R(N )is a vector potential,N >= 3,a >0,b >0,alpha is an element of(N-2,N],V:RN -> Ris a scalar potential function andI alpha is a Rieszpotential of order alpha is an element of(N-2,N]. Under certain assumptions onA(x),V(x)andf(t), we prove that the equation has at least one ground state solution byvariational methods and investigate the asymptotic behavior of solutions.
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Du, Miao
Tian, Lixin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Tian, Lixin
Wang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ, Fac Sci, Zhenjiang 212013, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Wang, Jun
Zhang, Fubao
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
Jia, Huifang
Luo, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China