EXISTENCE AND ASYMPTOTIC BEHAVIOR OF GROUND STATE SOLUTIONS FOR A CLASS OF MAGNETIC KIRCHHOFF CHOQUARD TYPE EQUATION WITH A STEEP POTENTIAL WELL

被引:0
|
作者
Zhou, Li [1 ]
Zhu, Chuanxi [2 ,3 ]
Liu, Shufen [4 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Zhejiang, Peoples R China
[2] Dalian Univ Technol, Sch Math, Dalian 116024, Liaoning, Peoples R China
[3] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[4] Nanchang JiaoTong Inst, Dept Basic Discipline, Nanchang 330031, Jiangxi, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Magnetic Laplace operator; ground state solutions; Nehari manifold; asymptotic behavior; NONLINEAR SCHRODINGER-EQUATIONS; MULTI-BUMP SOLUTIONS; SEMICLASSICAL SOLUTIONS; MULTIPLICITY; DECAY; FIELD;
D O I
10.11948/20230226
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear magnetic Kirch-hoff Choquard type equation [a+b integral RN(|del Au|2+lambda V(x)|u|2)dx](-triangle Au+lambda V(x)u) =(I alpha & lowast;F(|u|))f(|u|)|u|u,inR(N), where u:R-N -> C,A:R-N -> R(N )is a vector potential,N >= 3,a >0,b >0,alpha is an element of(N-2,N],V:RN -> Ris a scalar potential function andI alpha is a Rieszpotential of order alpha is an element of(N-2,N]. Under certain assumptions onA(x),V(x)andf(t), we prove that the equation has at least one ground state solution byvariational methods and investigate the asymptotic behavior of solutions.
引用
收藏
页码:379 / 391
页数:13
相关论文
共 50 条