Solutions of a quasilinear Schrödinger-Poisson system with linearly bounded nonlinearities

被引:0
作者
Li, Anran [1 ]
Wei, Chongqing [1 ]
Zhao, Leiga [2 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 02期
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger-Poisson system; Linearly bounded nonlinearities; Ground state solutions; Variational methods; SCHRODINGER-POISSON SYSTEM; GROUND-STATE SOLUTIONS; ASYMPTOTIC-BEHAVIOR; EXISTENCE; EQUATIONS;
D O I
10.1007/s00030-023-00912-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following quasilinear Schrodinger-Poisson system -Delta u+V(x)u+K(x)phi u=f(x,u),x is an element of R3,-Delta phi-epsilon 4 Delta 4 phi=K(x)u2,x is an element of R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+V(x)u+ K(x)\phi u=f(x,u),\quad &{}x\in {\mathbb {R}}<^>3,\\ -\Delta \phi -\varepsilon <^>4\Delta _4\phi = K(x) u<^>2, &{}x\in {\mathbb {R}}<^>3, \end{array}\right. } \end{aligned}$$\end{document}where epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is a positive parameter and f is linearly bounded in u at infinity. Under suitable assumptions on V, K and f, we establish the existence and asymptotic behavior of ground state solutions to the system. We prove that they converge to the solutions of the classic Schrodinger-Poisson system associated as epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} tends to zero.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Ground state solutions for quasilinear Schrödinger equations with critical Berestycki-Lions nonlinearities
    Han, Jian-Xin
    Chen, Ming-Chao
    Xue, Yan-Fang
    LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (02) : 138 - 162
  • [42] Critical planar Schrödinger-Poisson equations: existence, multiplicity and concentration
    Li, Yiqing
    Radulescu, Vicentiu D.
    Zhang, Binlin
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (03)
  • [43] Schrödinger-Poisson systems with zero mass in the Sobolev limiting case
    Romani, Giulio
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (09) : 3501 - 3530
  • [44] On sublinear fractional Schrödinger-Poisson systems
    Benhassine, Abderrazek
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (03):
  • [45] Stability of Schrödinger-Poisson type equations
    Juan Huang
    Jian Zhang
    Guang-gan Chen
    Applied Mathematics and Mechanics, 2009, 30 : 1469 - 1474
  • [46] Existence and multiplicity of nontrivial solutions for a class of Kirchhoff-Schr?dinger-Poisson systems
    Che, Guofeng
    Chen, Haibo
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (04) : 453 - 470
  • [47] On the existence of solutions for a class of nonlinear fractional Schrödinger-Poisson system: Subcritical and critical cases
    Li, Lin
    Tao, Huo
    Tersian, Stepan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1670 - 1708
  • [48] Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with zero mass
    Wang, Xiaoping
    Liao, Fangfang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 533 (01)
  • [49] Ground state solutions of Nehari-Pohozaev type for a fractional Schrödinger-Poisson system with critical growth
    Wentao Huang
    Li Wang
    Acta Mathematica Scientia, 2020, 40 : 1064 - 1080
  • [50] Existence and multiplicity of non-trivial solutions for fractional Schrödinger-Poisson systems with a combined nonlinearity
    Soluki, M.
    Afrouzi, G. A.
    Rasouli, S. H.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 211 - 224