Solutions of a quasilinear Schrödinger-Poisson system with linearly bounded nonlinearities

被引:0
|
作者
Li, Anran [1 ]
Wei, Chongqing [1 ]
Zhao, Leiga [2 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 02期
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger-Poisson system; Linearly bounded nonlinearities; Ground state solutions; Variational methods; SCHRODINGER-POISSON SYSTEM; GROUND-STATE SOLUTIONS; ASYMPTOTIC-BEHAVIOR; EXISTENCE; EQUATIONS;
D O I
10.1007/s00030-023-00912-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following quasilinear Schrodinger-Poisson system -Delta u+V(x)u+K(x)phi u=f(x,u),x is an element of R3,-Delta phi-epsilon 4 Delta 4 phi=K(x)u2,x is an element of R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+V(x)u+ K(x)\phi u=f(x,u),\quad &{}x\in {\mathbb {R}}<^>3,\\ -\Delta \phi -\varepsilon <^>4\Delta _4\phi = K(x) u<^>2, &{}x\in {\mathbb {R}}<^>3, \end{array}\right. } \end{aligned}$$\end{document}where epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is a positive parameter and f is linearly bounded in u at infinity. Under suitable assumptions on V, K and f, we establish the existence and asymptotic behavior of ground state solutions to the system. We prove that they converge to the solutions of the classic Schrodinger-Poisson system associated as epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} tends to zero.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Infinitely Many Solutions for Schrödinger-Poisson Systems and Schrödinger-Kirchhoff Equations
    Liu, Shibo
    MATHEMATICS, 2024, 12 (14)
  • [32] Solutions of a Schrödinger-Kirchhoff-Poisson system with concave-convex nonlinearities
    Soluki, M.
    Rasouli, S. H.
    Afrouzi, G. A.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) : 1233 - 1244
  • [33] SIGN-CHANGING SOLUTIONS FOR THE NONLINEAR SCHR(SIC)DINGER-POISSON SYSTEM WITH CRITICAL GROWTH
    Deng, Yinbin
    Shuai, Wei
    Yang, Xiaolong
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (05) : 2291 - 2308
  • [34] ON GROUND STATES FOR THE SCHRO "DINGER-POISSON SYSTEM WITH PERIODIC POTENTIALS
    Zhang, Wen
    Zhang, Jian
    Xie, Xiaoliang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (03) : 449 - 470
  • [35] A uniqueness result for the fractional Schrödinger-Poisson system with strong singularity
    Wang, Li
    Chen, Renhua
    Zhong, Qiaocheng
    Wang, Jun
    Li, Fang
    OPEN MATHEMATICS, 2024, 22 (01):
  • [36] Multiplicity of normalized solutions for the fractional Schrödinger-Poisson system with doubly critical growth
    Yuxi Meng
    Xiaoming He
    Acta Mathematica Scientia, 2024, 44 : 997 - 1019
  • [37] Infinitely many sign-changing solutions for planar Schrödinger-Poisson system
    Zhou, Jianwen
    Yang, Lu
    Yu, Yuanyang
    APPLICABLE ANALYSIS, 2025, 104 (04) : 612 - 628
  • [38] Ground State Sign-Changing Solutions for a Schrödinger-Poisson System with Steep Potential Well and Critical Growth
    Huang, Xiao-Qing
    Liao, Jia-Feng
    Liu, Rui-Qi
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (02)
  • [39] Stability of Schrdinger-Poisson type equations
    黄娟
    张健
    陈光淦
    AppliedMathematicsandMechanics(EnglishEdition), 2009, 30 (11) : 1469 - 1474
  • [40] Existence and multiplicity of solutions for the Schrödinger-Poisson equation with prescribed mass
    Peng, Xueqin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (05)