Solutions of a quasilinear Schrödinger-Poisson system with linearly bounded nonlinearities

被引:0
|
作者
Li, Anran [1 ]
Wei, Chongqing [1 ]
Zhao, Leiga [2 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 02期
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger-Poisson system; Linearly bounded nonlinearities; Ground state solutions; Variational methods; SCHRODINGER-POISSON SYSTEM; GROUND-STATE SOLUTIONS; ASYMPTOTIC-BEHAVIOR; EXISTENCE; EQUATIONS;
D O I
10.1007/s00030-023-00912-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following quasilinear Schrodinger-Poisson system -Delta u+V(x)u+K(x)phi u=f(x,u),x is an element of R3,-Delta phi-epsilon 4 Delta 4 phi=K(x)u2,x is an element of R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+V(x)u+ K(x)\phi u=f(x,u),\quad &{}x\in {\mathbb {R}}<^>3,\\ -\Delta \phi -\varepsilon <^>4\Delta _4\phi = K(x) u<^>2, &{}x\in {\mathbb {R}}<^>3, \end{array}\right. } \end{aligned}$$\end{document}where epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is a positive parameter and f is linearly bounded in u at infinity. Under suitable assumptions on V, K and f, we establish the existence and asymptotic behavior of ground state solutions to the system. We prove that they converge to the solutions of the classic Schrodinger-Poisson system associated as epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} tends to zero.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Positive and nodal ground state solutions for a critical Schr?dinger-Poisson system with indefinite potentials
    Furtado, Marcelo F.
    Wang, Ying
    Zhang, Ziheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
  • [22] Positive solutions for a planar Schr?dinger-Poisson system with prescribed mass
    Tao, Mengfei
    Zhang, Binlin
    APPLIED MATHEMATICS LETTERS, 2023, 137
  • [23] On Schrödinger-Poisson Systems
    Antonio Ambrosetti
    Milan Journal of Mathematics, 2008, 76 : 257 - 274
  • [24] Existence and asymptotic behavior of positive solutions to some logarithmic Schrödinger-Poisson system
    Cui, Lichao
    Mao, Anmin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):
  • [25] Existence of Ground State Solutions for the Schródinger-Poisson System in R2
    Yuan, Ziqing
    TAIWANESE JOURNAL OF MATHEMATICS, 2025, 29 (01): : 67 - 87
  • [26] Variable Supercritical Schrödinger-Poisson system with singular term
    de Araujo, Anderson Luis Albuquerque
    Faria, Luiz Fernando de Oliveira
    Silva, Jeferson Camilo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [27] The existence and multiplicity of solutions of a fractional Schrödinger-Poisson system with critical growth
    Yuanyang Yu
    Fukun Zhao
    Leiga Zhao
    Science China Mathematics, 2018, 61 : 1039 - 1062
  • [28] The existence and multiplicity of solutions of a fractional Schrdinger-Poisson system with critical growth
    Yuanyang Yu
    Fukun Zhao
    Leiga Zhao
    ScienceChina(Mathematics), 2018, 61 (06) : 1039 - 1062
  • [29] Solutions for Schrödinger-Poisson system involving nonlocal term and critical exponent
    Xiu-ming Mo
    An-min Mao
    Xiang-xiang Wang
    Applied Mathematics-A Journal of Chinese Universities, 2023, 38 : 357 - 372
  • [30] Ground State Solution for the Logarithmic Schrödinger-Poisson System with Critical Growth
    Cai, Yaqing
    Zhao, Yulin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (01)