Self-supervised Semantic Segmentation: Consistency over Transformation

被引:1
|
作者
Karimijafarbigloo, Sanaz [1 ]
Azad, Reza [2 ]
Kazerouni, Amirhossein [3 ]
Velichko, Yury [4 ]
Bagci, Ulas [4 ]
Merhof, Dorit [1 ,5 ]
机构
[1] Univ Regensburg, Fac Informat & Data Sci, Regensburg, Germany
[2] Rhein Westfal TH Aachen, Fac Elect Engn & Informat Technol, Aachen, Germany
[3] Iran Univ Sci & Technol, Sch Elect Engn, Tehran, Iran
[4] Northwestern Univ, Dept Radiol, Chicago, IL USA
[5] Fraunhofer Inst Digital Med MEVIS, Bremen, Germany
来源
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW | 2023年
关键词
D O I
10.1109/ICCVW60793.2023.00280
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate medical image segmentation is of utmost importance for enabling automated clinical decision procedures. However, prevailing supervised deep learning approaches for medical image segmentation encounter significant challenges due to their heavy dependence on extensive labeled training data. To tackle this issue, we propose a novel self-supervised algorithm, S-3-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules. This architectural enhancement makes it possible to comprehensively capture contextual information while preserving local intricacies, thereby enabling precise semantic segmentation. Furthermore, considering that lesions in medical images often exhibit deformations, we leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition. Additionally, our self-supervised strategy emphasizes the acquisition of invariance to affine transformations, which is commonly encountered in medical scenarios. This emphasis on robustness with respect to geometric distortions significantly enhances the model's ability to accurately model and handle such distortions. To enforce spatial consistency and promote the grouping of spatially connected image pixels with similar feature representations, we introduce a spatial consistency loss term. This aids the network in effectively capturing the relationships among neighboring pixels and enhancing the overall segmentation quality. The S3-Net approach iteratively learns pixel-level feature representations for image content clustering in an end-to-end manner. Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches. Github.
引用
收藏
页码:2646 / 2655
页数:10
相关论文
共 50 条
  • [1] Self-supervised Augmentation Consistency for Adapting Semantic Segmentation
    Araslanov, Nikita
    Roth, Stefan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15379 - 15389
  • [2] Cycle and Self-Supervised Consistency Training for Adapting Semantic Segmentation of Aerial Images
    Gao, Han
    Zhao, Yang
    Guo, Peng
    Sun, Zihao
    Chen, Xiuwan
    Tang, Yunwei
    REMOTE SENSING, 2022, 14 (07)
  • [3] Spatial and Semantic Consistency Contrastive Learning for Self-Supervised Semantic Segmentation of Remote Sensing Images
    Dong, Zhe
    Liu, Tianzhu
    Gu, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Spatial and Semantic Consistency Contrastive Learning for Self-Supervised Semantic Segmentation of Remote Sensing Images
    Dong, Zhe
    Liu, Tianzhu
    Gu, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] Self-supervised vision transformers for semantic segmentation
    Gu, Xianfan
    Hu, Yingdong
    Wen, Chuan
    Gao, Yang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2025, 251
  • [6] SurgNet: Self-Supervised Pretraining With Semantic Consistency for Vessel and Instrument Segmentation in Surgical Images
    Chen, Jiachen
    Li, Mengyang
    Han, Hu
    Zhao, Zhiming
    Chen, Xilin
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (04) : 1513 - 1525
  • [7] Self-Supervised Temporal Consistency applied to Domain Adaptation in Semantic Segmentation of Urban Scenes
    Barbosa, Felipe M.
    Osorio, Fernando S.
    2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, : 555 - 560
  • [8] Self-Supervised Embodied Learning for Semantic Segmentation
    Wang, Juan
    Liu, Xinzhu
    Zhao, Dawei
    Dai, Bin
    Liu, Huaping
    2023 IEEE INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING, ICDL, 2023, : 383 - 390
  • [9] Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
    Valada, Abhinav
    Mohan, Rohit
    Burgard, Wolfram
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (05) : 1239 - 1285
  • [10] Self-supervised contrastive representation learning for semantic segmentation
    Liu B.
    Cai H.
    Wang Y.
    Chen X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2024, 51 (01): : 125 - 134