A novel intelligent optimization-based maximum power point tracking control of photovoltaic system under partial shading conditions

被引:6
作者
Aron, Mary Beula [1 ]
Louis, Josephine Rathinadurai [1 ]
机构
[1] Natl Inst Technol, Dept Elect & Elect Engn, Tanjore Main Rd,NH67,Near BHEL, Tiruchirappalli 620015, Tamil Nadu, India
关键词
Photovoltaic; MPPT; Partial shading; DC-DC converter; Optimization; PV; ALGORITHM; MPPT;
D O I
10.1007/s10470-023-02216-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Due to its abundant natural supply and environmentally friendly features, solar photovoltaic (PV) production based on renewable energy is the ideal substitute for conventional energy sources. The efficiency of solar power generation under partial shading conditions (PSCs) is significantly increased by maximizing power extraction from the PV system. The maximum power point tracking (MPPT) method is to track maximum PowerPoint (MPP). This research proposes a photovoltaic MPPT control in partial shading conditions using Loxo-Canis (LOXOCAN) optimization algorithm. The ultimate goal of the novel method is to track the solar photovoltaic system's maximum power point under conditions of partial shading using the LOXOCAN algorithm. The proposed LOXOCAN algorithm is a combination of Elephant-herd optimization (EHO) and Coyote Optimization Algorithm (COA). The K-p, K-i, and K-d parameters of the PID controller of the MPPT controller will be tuned to their optimum values using the proposed optimization strategy. Higher MPPT performance and a quick convergence at the global maxima are shown in the proposed Loxo-Canis approach. Also, the recommended hybrid Loxo-Canis MPPT approach offers faster MPPT, less computational work, and higher efficiency.
引用
收藏
页码:489 / 503
页数:15
相关论文
共 30 条
[11]   Photovoltaic Power-Increment-Aided Incremental-Conductance MPPT With Two-Phased Tracking [J].
Hsieh, Guan-Chyun ;
Hsieh, Hung-I ;
Tsai, Cheng-Yuan ;
Wang, Chi-Hao .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (06) :2895-2911
[12]   Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model [J].
Ishaque, Kashif ;
Salam, Zainal ;
Taheri, Hamed ;
Syafaruddin .
SIMULATION MODELLING PRACTICE AND THEORY, 2011, 19 (07) :1613-1626
[13]   Enhanced Elephant Herding Optimization for Global Optimization [J].
Ismaeel, Alaa A. K. ;
Elshaarawy, Islam A. ;
Houssein, Essam H. ;
Ismail, Fatma Helmy ;
Hassanien, Aboul Ella .
IEEE ACCESS, 2019, 7 :34738-34752
[14]   Load voltage-based MPPT technique for standalone PV systems using adaptive step [J].
Kumar, Vipin ;
Ghosh, Sandip ;
Naidu, N. K. Swami ;
Kamal, Shyam ;
Saket, R. K. ;
Nagar, S. K. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 128
[15]   Elephant Herding Optimization: Variants, Hybrids, and Applications [J].
Li, Juan ;
Lei, Hong ;
Alavi, Amir H. ;
Wang, Gai-Ge .
MATHEMATICS, 2020, 8 (09)
[16]   An Enhanced Grey Wolf Optimization Algorithm for Photovoltaic Maximum Power Point Tracking Control Under Partial Shading Conditions [J].
Millah, Ibrahim Saiful ;
Chang, Pei Cheng ;
Teshome, Dawit Fekadu ;
Subroto, Ramadhani Kurniawan ;
Lian, Kuo Lung ;
Lin, Jia-Fu .
IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY, 2022, 3 :392-408
[17]   Modified grey wolf optimization for global maximum power point tracking under partial shading conditions in photovoltaic system [J].
Motamarri, Rambabu ;
Bhookya, Nagu ;
Chitti Babu, B. .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2021, 49 (07) :1884-1901
[18]   Global Maximum Power Point Tracking of Solar Photovoltaic Strings under Partial Shading Conditions Using Cat Swarm Optimization Technique [J].
Nagadurga, T. ;
Narasimham, P. V. R. L. ;
Vakula, V. S. .
SUSTAINABILITY, 2021, 13 (19)
[19]   Enhancing Global Maximum Power Point of Solar Photovoltaic Strings under Partial Shading Conditions Using Chimp Optimization Algorithm [J].
Nagadurga, Timmidi ;
Narasimham, Pasumarthi Venkata Ramana Lakshmi ;
Vakula, V. S. ;
Devarapalli, Ramesh ;
Marquez, Fausto Pedro Garcia .
ENERGIES, 2021, 14 (14)
[20]  
Nayak B, 2017, COGENT ENG, V4, DOI 10.1080/23311916.2017.1363357