THE MOORE-PENROSE INVERSE OF THE RECTANGULAR FIBONACCI MATRIX AND APPLICATIONS TO THE CRYPTOLOGY
被引:4
作者:
Aydinyuz, Sueleyman
论文数: 0引用数: 0
h-index: 0
机构:
Pamukkale Univ, Fac Sci, Dept Math, TR-20160 Denizli, TurkiyePamukkale Univ, Fac Sci, Dept Math, TR-20160 Denizli, Turkiye
Aydinyuz, Sueleyman
[1
]
Asci, Mustafa
论文数: 0引用数: 0
h-index: 0
机构:
Pamukkale Univ, Fac Sci, Dept Math, TR-20160 Denizli, TurkiyePamukkale Univ, Fac Sci, Dept Math, TR-20160 Denizli, Turkiye
Asci, Mustafa
[1
]
机构:
[1] Pamukkale Univ, Fac Sci, Dept Math, TR-20160 Denizli, Turkiye
来源:
ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS
|
2023年
/
40卷
/
02期
关键词:
Fibonacci matrix;
the Moore-Penrose generalized inverse;
pseudo-inverse;
encryption;
cryptology;
D O I:
10.17654/0974165823066
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we define the general form of the Moore-Penrose inverse for the matrix whose elements are Fibonacci numbers. We examine the states of the matrix F e Mm ,n(C), where F is a rectangular Fibonacci matrix based on the values of m and n. In the second part of this study, we introduce a novel coding theory using the Moore-Penrose inverse of the rectangular Fibonacci matrix and provide illustrative examples. The rectangular Fibonacci matrix plays a crucial role in the construction of the coding algorithm. This coding method is referred to as the "coding theory on rectangular Fibonacci matrix."