AI tools as science policy advisers? The potential and the pitfalls

被引:11
作者
Tyler, Chris [1 ]
Akerlof, K. L. [2 ]
Allegra, Alessandro [3 ,4 ]
Arnold, Zachary [5 ]
Canino, Henriette [1 ]
Doornenbal, Marius A. [6 ]
Goldstein, Josh A. [7 ]
Pedersen, David Budtz [8 ]
Sutherland, William J. [9 ]
机构
[1] UCL, Dept Sci Technol Engn & Publ Policy STEaPP, London, England
[2] George Mason Univ, Dept Environm Sci & Policy, Fairfax, VA USA
[3] UCL, Dept Sci & Technol Studies, London, England
[4] European Commiss, Gen Res & Innovat, Brussels, Belgium
[5] Georgetown Univ, Ctr Secur & Emerging Technol, Emerging Technol Observ, Washington, DC USA
[6] Elsevier, Amsterdam, Netherlands
[7] Georgetown Univ, Ctr Secur & Emerging Technol, Washington, DC USA
[8] Aalborg Univ, Dept Commun & Psychol, Sci Commun, Copenhagen, Denmark
[9] Univ Cambridge, Dept Zool, Conservat Sci Grp, Cambridge, England
关键词
Machine learning; Policy; Computer science; Government;
D O I
10.1038/d41586-023-02999-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large language models and other artificial-intelligence systems could be excellent at synthesizing scientific evidence for policymakers - but only with appropriate safeguards and humans in the loop. Large language models and other artificial-intelligence systems could be excellent at synthesizing scientific evidence for policymakers - but only with appropriate safeguards and humans in the loop.
引用
收藏
页码:27 / 30
页数:4
相关论文
共 15 条
  • [1] Amano T., 2016, PLOS BIOL, V14, DOI [DOI 10.1371/JOURNAL.PBIO.2000933, 10.1371/journal.pbio.2000933]
  • [2] Anon, 2023, NAT MACH INTELL, V5, P1, DOI [10.1038/s42256-023-00613-9, DOI 10.1038/S42256-023-00613-9]
  • [3] Open Science, Open Data, and Open Scholarship: European Policies to Make Science Fit for the Twenty-First Century
    Burgelman, Jean-Claude
    Pascu, Corina
    Szkuta, Katarzyna
    Von Schomberg, Rene
    Karalopoulos, Athanasios
    Repanas, Konstantinos
    Schouppe, Michel
    [J]. FRONTIERS IN BIG DATA, 2019, 2
  • [4] Cavelty MD, 2022, CSS STUD SEC INT REL, P1, DOI 10.4324/9781003110224-1
  • [5] Citation counts and journal impact factors do not capture some indicators of research quality in the behavioural and brain sciences
    Dougherty, Michael R.
    Horne, Zachary
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (08):
  • [6] Dunham J, 2020, Arxiv, DOI [arXiv:2002.07143, 10.48550/arXiv.2002.07143, DOI 10.48550/ARXIV.2002.07143]
  • [7] Feng SB, 2023, PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, P11737
  • [8] New US government open access policy
    Horder, Jamie
    [J]. NATURE HUMAN BEHAVIOUR, 2023, 7 (02) : 168 - 168
  • [9] Toward systematic review automation: a practical guide to using machine learning tools in research synthesis
    Marshall, Iain J.
    Wallace, Byron C.
    [J]. SYSTEMATIC REVIEWS, 2019, 8 (1)
  • [10] Flexible synthesis can deliver more tailored and timely evidence for research and policy
    Martin, Philip A.
    Christie, Alec P.
    Shackelford, Gorm E.
    Hood, Amelia S. C.
    Wang, Shengyu
    Li, Bo
    Morgan, William
    Lee, Madeleine
    Aldridge, David C.
    Sutherland, William J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (25)