A Survey on Unsupervised Anomaly Detection Algorithms for Industrial Images

被引:15
|
作者
Cui, Yajie [1 ]
Liu, Zhaoxiang [1 ]
Lian, Shiguo [1 ]
机构
[1] Unicom Digital Technol Co Ltd, Beijing 100013, Peoples R China
关键词
Anomaly detection; Visualization; Surveys; Deep learning; Production; Filter banks; Gabor filters; Industrial anomaly detection; unsupervised learning; deep learning; DEFECT DETECTION; SURFACE-DEFECTS; FEATURE-SELECTION; CLASSIFICATION; RECOGNITION; TRANSFORM; FEATURES;
D O I
10.1109/ACCESS.2023.3282993
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In line with the development of Industry 4.0, surface defect detection/anomaly detection becomes a topical subject in the industry field. Improving efficiency as well as saving labor costs has steadily become a matter of great concern in practice, where deep learning-based algorithms perform better than traditional vision inspection methods in recent years. While existing deep learning-based algorithms are biased towards supervised learning, which not only necessitates a huge amount of labeled data and human labor, but also brings about inefficiency and limitations. In contrast, recent research shows that unsupervised learning has great potential in tackling the above disadvantages for visual industrial anomaly detection. In this survey, we summarize current challenges and provide a thorough overview of recently proposed unsupervised algorithms for visual industrial anomaly detection covering five categories, whose innovation points and frameworks are described in detail. Meanwhile, publicly available datasets for industrial anomaly detection are introduced. By comparing different classes of methods, the advantages and disadvantages of anomaly detection algorithms are summarized. Based on the current research framework, we point out the core issue that remains to be resolved and provide further improvement directions. Meanwhile, based on the latest technological trends, we offer insights into future research directions. It is expected to assist both the research community and industry in developing a broader and cross-domain perspective.
引用
收藏
页码:55297 / 55315
页数:19
相关论文
共 50 条
  • [31] Anomaly Detection in Blockchain Networks Using Unsupervised Learning: A Survey
    Cholevas, Christos
    Angeli, Eftychia
    Sereti, Zacharoula
    Mavrikos, Emmanouil
    Tsekouras, George E.
    ALGORITHMS, 2024, 17 (05)
  • [32] Unsupervised Anomaly Detection
    Guthrie, David
    Guthrie, Louise
    Allison, Ben
    Wilks, Yorick
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 1624 - 1628
  • [33] Anomaly detection using unsupervised machine learning algorithms: A simulation study
    Agyemang, Edmund Fosu
    SCIENTIFIC AFRICAN, 2024, 26
  • [34] Anomaly detection for atomic clocks using unsupervised machine learning algorithms
    Chen, Edwin
    Charbonneau, Andre
    Gertsvolf, Marina
    Wang, Yunli
    METROLOGIA, 2024, 61 (05)
  • [35] SURVEY ON UNSUPERVISED CHANGE DETECTION TECHNIQUES IN SAR IMAGES
    Ren, Weilong
    Song, Jianshe
    Tian, Song
    Wu, Wenfeng
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 143 - 147
  • [36] Evolutionary Adversarial Autoencoder for Unsupervised Anomaly Detection of Industrial Internet of Things
    Zeng, Guo-Qiang
    Yang, Yao-Wei
    Lu, Kang-Di
    Geng, Guang-Gang
    Weng, Jian
    IEEE TRANSACTIONS ON RELIABILITY, 2025,
  • [37] A Review of Unsupervised Machine Learning Frameworks for Anomaly Detection in Industrial Applications
    Usmani, Usman Ahmad
    Happonen, Ari
    Watada, Junzo
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 158 - 189
  • [38] Explainable Unsupervised Multi-Sensor Industrial Anomaly Detection and Categorization
    Ameli, Mina
    Becker, Philipp Aaron
    Lankers, Katharina
    van Ackeren, Markus
    Baehring, Holger
    Maass, Wolfgang
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1468 - 1475
  • [39] An Adaptable and Unsupervised TinyML Anomaly Detection System for Extreme Industrial Environments
    Antonini, Mattia
    Pincheira, Miguel
    Vecchio, Massimo
    Antonelli, Fabio
    SENSORS, 2023, 23 (04)
  • [40] Unsupervised Anomaly Detection for Network Data Streams in Industrial Control Systems
    Liu, Limengwei
    Hu, Modi
    Kang, Chaoqun
    Li, Xiaoyong
    INFORMATION, 2020, 11 (02)