Molecular exchange and passivation at interface afford high-performing perovskite solar cells with efficiency over 24%

被引:19
作者
Sun, Jianjun [1 ,2 ]
Chen, Wangchao [2 ]
Ren, Yingke [3 ]
Niu, Yunjuan [1 ,5 ]
Yang, Zhiqian [1 ,5 ]
Mo, Li'e [1 ,5 ]
Huang, Yang [1 ]
Li, Zhaoqian [1 ]
Zhang, Hong [4 ]
Hu, Linhua [1 ,5 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Photovolta & Energy Conservat Mat, HFIPS, Hefei 230031, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Chem & Chem Engn, Anhui Prov Key Lab Adv Catalyt Mat & React Engn, Hefei 230009, Anhui, Peoples R China
[3] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
[4] Hebei Univ Engn, Sch Math & Phys Sci & Engn, Hebei Computat Opt Imaging & Photoelect Detect Tec, Hebei Int Joint Res Ctr Computat Opt Imaging & Int, Handan 056038, Hebei, Peoples R China
[5] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 82卷
基金
中国科学院西部之光基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
Perovskite solar cell; Anti-solvent; 4; 4'-Dinonyl-2-2'-dipyridine; Optimized interface; Stability; HYSTERESIS;
D O I
10.1016/j.jechem.2023.03.003
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The interface is crucial for perovskite solar cells (PSCs). However, voids at interfaces induced by the trapped hygroscopic dimethyl sulfoxide (DMSO) can reduce charge extraction and accelerate the film degradation, seriously damaging the efficiency and stability. In this work, 4,40-dinonyl-2,20-dipyridine (DN-DP), a Lewis base with long alkyl chains is introduced to solve this problem. Theoretical calculated and experimental results confirm that the dipyridyl group on DN-DP can more strongly coordinate with Pb2+ than that of the S=O group on DMSO. The strong coordination effect plays a crucial role in removing the DMSO-based adduct and reducing the formation of voids. Due to the electron-donating properties of pyridine, the existence of DN-DP in the perovskite film can passivate the defects and optimize the energy level alignment of the perovskite configuration. The open-circuit voltage (VOC) of the DN-DP-based PSC is improved from 1.107 V (control device) to 1.153 V, giving rise to a power conversion efficiency (PCE) of 24.02%. Furthermore, benefiting from the moisture resistance stemming from the hydrophobic nonyl group, the PCE retains 90.4% of the initial performance after 1000 h of storage in the ambient condition. (c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:219 / 227
页数:9
相关论文
共 50 条
[31]   Potassium- intercalated rubrene as a dualfunctional passivation agent for high efficiency perovskite solar cells [J].
Qin, Pingli ;
Zhang, Jiliang ;
Yang, Guang ;
Yu, Xueli ;
Li, Gang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (04) :1824-1834
[32]   High-Efficiency Inverted Perovskite Solar Cells via In Situ Passivation Directed Crystallization [J].
Huang, Yanchun ;
Yan, Kangrong ;
Wang, Xinjiang ;
Li, Biao ;
Niu, Benfang ;
Yan, Minxing ;
Shen, Ziqiu ;
Zhou, Kun ;
Fang, Yanjun ;
Yu, Xuegong ;
Chen, Hongzheng ;
Zhang, Lijun ;
Li, Chang-Zhi .
ADVANCED MATERIALS, 2024, 36 (41)
[33]   Grain Boundary and Interface Passivation with Core-Shell Au@CdS Nanospheres for High-Efficiency Perovskite Solar Cells [J].
Qin, Pingli ;
Wu, Tong ;
Wang, Zhengchun ;
Xiao, Lan ;
Ma, Liang ;
Ye, Feihong ;
Xiong, Lun ;
Chen, Xiangbai ;
Li, Haixia ;
Yu, Xueli ;
Fang, Guojia .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (12)
[34]   Synergistic Passivation Strategies for Enhancing Efficiency and Stability of Perovskite Solar Cells [J].
Weng, Hongxin ;
Xiang, Peng ;
Li, Bowen ;
Zhang, Hong ;
Luo, Qi ;
Jun, Chengyu ;
Dai, Qihao ;
Xiao, Ting ;
Jiang, Lihua ;
Tan, Xinyu .
ENERGY TECHNOLOGY, 2025, 13 (03)
[35]   Perovskite interface defect passivation with poly(ethylene oxide) for improving power conversion efficiency of the inverted solar cells [J].
Duan, Chengyi ;
Zhang, Xiaofei ;
Du, Zheren ;
Chen, Jia ;
El-Bashar, Ramy ;
Obayya, S. S. A. ;
Hameed, Mohamed ;
Dai, Jun .
OPTICS EXPRESS, 2023, 31 (12) :20364-20376
[36]   Suppressing surface and interface recombination to afford efficient and stable inverted perovskite solar cells [J].
He, Xiaolong ;
Arain, Zulqarnain ;
Liu, Cheng ;
Yang, Yi ;
Chen, Jianlin ;
Zhang, Xianfu ;
Huang, Jingsong ;
Ding, Yong ;
Liu, Xuepeng ;
Dai, Songyuan .
NANOSCALE, 2024, 16 (36) :17042-17048
[37]   Interface passivation using diketopyrrolopyrrole-oligothiophene copolymer to improve the performance of perovskite solar cells [J].
Abicho, Samuel ;
Hailegnaw, Bekele ;
Mayr, Felix ;
Cobet, Munise ;
Yumusak, Cigdem ;
Esubalew, Siraye ;
Yohannes, Teketel ;
Kaltenbrunner, Martin ;
Sariciftci, Niyazi Serdar ;
Scharber, Markus Clark ;
Workneh, Getachew Adam .
ENERGY SCIENCE & ENGINEERING, 2024, 12 (05) :2272-2283
[38]   Enhancing the efficiency and stability of 2D-3D perovskite solar cells with embedded interface passivation with diammonium cation spacer [J].
Malouangou, Maurice Davy ;
Zhang, Yujing ;
Yang, Yifan ;
Mbumba, Manala Tabu ;
Akram, Muhammad Waleed ;
Rop, Eric ;
Matondo, Jadel Tsiba ;
Guli, Mina .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 251
[39]   Bulk In Situ Reconstruction of Heterojunction Perovskite Enabling Stable Solar Cells Over 24% Efficiency [J].
Hou, Shanyue ;
Ma, Zhu ;
Li, Yanlin ;
Du, Zhuowei ;
Chen, Yi ;
Yang, Junbo ;
You, Wei ;
Yang, Qiang ;
Yu, Tangjie ;
Huang, Zhangfeng ;
Li, Guomin ;
Wang, Haoyu ;
Liu, Qianyu ;
Yan, Guangyuan ;
Li, Haimin ;
Huang, Yuelong ;
Zhang, Wenhua ;
Abdi-Jalebi, Mojtaba ;
Ou, Zeping ;
Sun, Kuan ;
Su, Rong ;
Long, Wei .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (04)
[40]   Dual Passivation of Perovskite and SnO2 for High-Efficiency MAPbI3 Perovskite Solar Cells [J].
Chen, Yali ;
Zuo, Xuejiao ;
He, Yiyang ;
Qian, Fang ;
Zuo, Shengnan ;
Zhang, Yalan ;
Liang, Lei ;
Chen, Zuqin ;
Zhao, Kui ;
Liu, Zhike ;
Gou, Jing ;
Liu, Shengzhong .
ADVANCED SCIENCE, 2021, 8 (05)