Molecular exchange and passivation at interface afford high-performing perovskite solar cells with efficiency over 24%

被引:19
作者
Sun, Jianjun [1 ,2 ]
Chen, Wangchao [2 ]
Ren, Yingke [3 ]
Niu, Yunjuan [1 ,5 ]
Yang, Zhiqian [1 ,5 ]
Mo, Li'e [1 ,5 ]
Huang, Yang [1 ]
Li, Zhaoqian [1 ]
Zhang, Hong [4 ]
Hu, Linhua [1 ,5 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Photovolta & Energy Conservat Mat, HFIPS, Hefei 230031, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Chem & Chem Engn, Anhui Prov Key Lab Adv Catalyt Mat & React Engn, Hefei 230009, Anhui, Peoples R China
[3] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
[4] Hebei Univ Engn, Sch Math & Phys Sci & Engn, Hebei Computat Opt Imaging & Photoelect Detect Tec, Hebei Int Joint Res Ctr Computat Opt Imaging & Int, Handan 056038, Hebei, Peoples R China
[5] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 82卷
基金
中国科学院西部之光基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
Perovskite solar cell; Anti-solvent; 4; 4'-Dinonyl-2-2'-dipyridine; Optimized interface; Stability; HYSTERESIS;
D O I
10.1016/j.jechem.2023.03.003
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The interface is crucial for perovskite solar cells (PSCs). However, voids at interfaces induced by the trapped hygroscopic dimethyl sulfoxide (DMSO) can reduce charge extraction and accelerate the film degradation, seriously damaging the efficiency and stability. In this work, 4,40-dinonyl-2,20-dipyridine (DN-DP), a Lewis base with long alkyl chains is introduced to solve this problem. Theoretical calculated and experimental results confirm that the dipyridyl group on DN-DP can more strongly coordinate with Pb2+ than that of the S=O group on DMSO. The strong coordination effect plays a crucial role in removing the DMSO-based adduct and reducing the formation of voids. Due to the electron-donating properties of pyridine, the existence of DN-DP in the perovskite film can passivate the defects and optimize the energy level alignment of the perovskite configuration. The open-circuit voltage (VOC) of the DN-DP-based PSC is improved from 1.107 V (control device) to 1.153 V, giving rise to a power conversion efficiency (PCE) of 24.02%. Furthermore, benefiting from the moisture resistance stemming from the hydrophobic nonyl group, the PCE retains 90.4% of the initial performance after 1000 h of storage in the ambient condition. (c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:219 / 227
页数:9
相关论文
共 50 条
[21]   Interface Passivation of Inverted Perovskite Solar Cells by Dye Molecules [J].
Qi, Yifang ;
Ndaleh, David ;
Meador, William E. ;
Delcamp, Jared H. ;
Hill, Glake ;
Pradhan, Nihar Ranjan ;
Dai, Qilin .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) :9525-9533
[22]   In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells [J].
Wang, Gaoxiang ;
Wang, Lipeng ;
Qiu, Jianhang ;
Yan, Zheng ;
Li, Changji ;
Dai, Chunli ;
Zhen, Chao ;
Tai, Kaiping ;
Yu, Wei ;
Jiang, Xin .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) :7690-7700
[23]   Optimizing the Buried Interface in Flexible Perovskite Solar Cells to Achieve Over 24% Efficiency and Long-Term Stability [J].
Xu, Ruoyao ;
Pan, Fang ;
Chen, Jinyu ;
Li, Jingrui ;
Yang, Yingguo ;
Sun, Yulu ;
Zhu, Xinyi ;
Li, Peizhou ;
Cao, Xiangrong ;
Xi, Jun ;
Xu, Jie ;
Yuan, Fang ;
Dai, Jinfei ;
Zuo, Chuantian ;
Ding, Liming ;
Dong, Hua ;
Jen, Alex K. -Y. ;
Wu, Zhaoxin .
ADVANCED MATERIALS, 2024, 36 (07)
[24]   CdS Induced Passivation toward High Efficiency and Stable Planar Perovskite Solar Cells [J].
Zhao, Wenyan ;
Shi, Jiangjian ;
Tian, Chuanjin ;
Wu, Jionghua ;
Li, Hongshi ;
Li, Yusheng ;
Yu, Bingcheng ;
Luo, Yanhong ;
Wu, Huijue ;
Xie, Zhipeng ;
Wang, Changan ;
Duan, Defang ;
Li, Dongmei ;
Meng, Qingbo .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (08) :9771-9780
[25]   Hole-Selective Contact with Molecularly Tailorable Reactivity for Passivating High-Performing Inverted Perovskite Solar Cells [J].
Jiang, Wenlin ;
Hu, Yingjie ;
Li, Fengzhu ;
Lin, Francis R. ;
Jen, Alex K-Y. .
CCS CHEMISTRY, 2024, 6 (07) :1654-1661
[26]   Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis [J].
Peng, Jun ;
Wu, Yiliang ;
Ye, Wang ;
Jacobs, Daniel A. ;
Shen, Heping ;
Fu, Xiao ;
Wan, Yimao ;
Duong, The ;
Wu, Nandi ;
Barugkin, Chog ;
Nguyen, Hieu T. ;
Zhong, Dingyong ;
Li, Juntao ;
Lu, Teng ;
Liu, Yun ;
Lockrey, Mark N. ;
Weber, Klaus J. ;
Catchpolea, Kylie R. ;
White, Thomas P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (08) :1792-1800
[27]   Stable High-Performance Perovskite Solar Cells via Passivation of the Grain Boundary and Interface [J].
Gu, Leilei ;
Wang, Shubo ;
Chen, Yiqi ;
Xu, Yibo ;
Li, Ruiyi ;
Liu, Di ;
Fang, Xiang ;
Jia, Xuguang ;
Yuan, Ningyi ;
Ding, Jianning .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (07) :6883-6891
[28]   The role of TCNQ for surface and interface passivation in inverted perovskite solar cells [J].
Abicho, Samuel ;
Hailegnaw, Bekele ;
Mayr, Felix ;
Cobet, Munise ;
Yumusak, Cigdem ;
Sergawi, Asefa ;
Yohannes, Teketel ;
Kaltenbrunner, Martin ;
Scharber, Markus Clark ;
Workneh, Getachew Adam .
MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2025, 14 (01)
[29]   Interface modification by sulfonamide for high-efficiency and stable perovskite solar cells [J].
Xu, Yanchao ;
Liu, Xingchong ;
Peng, Yongshan ;
He, Tanggui ;
Tang, Anmin ;
Li, Haimin ;
Wang, Hanyu .
ORGANIC ELECTRONICS, 2025, 144
[30]   Comprehensive Passivation on Different Charged Ions and Defects for High Efficiency and Stable Perovskite Solar Cells [J].
Ma, Xixi ;
Yang, Xiuying ;
Wang, Ming ;
Qin, Ru ;
Xu, Dongfang ;
Lan, Chaowen ;
Zhao, Kui ;
Liu, Zhike ;
Yu, Binxun ;
Gou, Jing ;
Liu, Shengzhong Frank .
ADVANCED ENERGY MATERIALS, 2025, 15 (03)