Practical Stability for Conformable Time-Delay Systems

被引:7
作者
Kharrat, Maher [1 ]
Gassara, Hamdi [1 ]
Rhaima, Mohamed [2 ]
Mchiri, Lassaad [3 ]
Ben Makhlouf, A. [4 ]
机构
[1] Univ Sfax, Lab Sci & Tech Automat & Comp Engn Lab STA, ENIS, POB 1173, Sfax 3038, Tunisia
[2] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[3] Univ Evry Val Essonne, ENSIIE, 1 Sq Resistance, F-91025 Evry Courcouronnes, France
[4] Univ Sfax, Fac Sci Sfax, Dept Math, Sfax, Tunisia
关键词
D O I
10.1155/2023/9375360
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article investigates the practical exponential stability and design problems of conformable time-delay systems. Sufficient conditions that confirm the practical exponential stability and design of the proposed class of systems are given by utilizing an adequate Lyapunov-Krasovskii functional (L-KF). These conditions are expressed in the form of linear matrix inequalities (LMI) which could be solved by using solvers in LMI Toolbox of MATLAB. Two numerical examples are given to illustrate the applicability of the proposed results.
引用
收藏
页数:7
相关论文
共 50 条
[11]   ROBUST STABILITY OF TIME-DELAY SYSTEMS [J].
KHARITONOV, VL ;
ZHABKO, AP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (12) :2388-2397
[12]   Stability of linear time-delay systems [J].
Barkin, AI .
AUTOMATION AND REMOTE CONTROL, 2006, 67 (03) :345-349
[13]   Stability of linear time-delay systems [J].
A. I. Barkin .
Automation and Remote Control, 2006, 67 :345-349
[14]   Stability and robustness of time-delay systems [J].
Chiou, Juing-Shian ;
Wang, Wen-June ;
Jeng, Yn-Shyang .
Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 1993, 16 (04) :565-569
[16]   Practical stability and disturbance rejection of Internal Model Control for time-delay systems [J].
Abe, N .
PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, :1621-1622
[17]   FUNCTIONAL DIFFERENTIAL INEQUALITIES AND TIME-DELAY STOCHASTIC SYSTEMS (Ⅳ)——CRITERIA FOR PRACTICAL STABILITY [J].
冯昭枢 ;
刘永清 ;
郭锋卫 .
ChineseScienceBulletin, 1992, (13) :1069-1072
[18]   Computation of delay intervals for stability of time-delay systems [J].
Leyva-Ramos, J. ;
Morales-Saldana, J. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) :980-989
[19]   DELAY DEPENDENT STABILITY OF LINEAR TIME-DELAY SYSTEMS [J].
Stojanovic, Sreten B. ;
Debeljkovic, Dragutin Lj. .
THEORETICAL AND APPLIED MECHANICS, 2013, 40 (02) :223-245
[20]   On practical stability of time delay systems [J].
Nenadic, ZL ;
Debeljkovic, DL ;
Milinkovic, SA .
PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, :3235-3236