Detecting the Spatiotemporal Variation of Vegetation Phenology in Northeastern China Based on MODIS NDVI and Solar-Induced Chlorophyll Fluorescence Dataset

被引:5
作者
Zhang, Ruixin [1 ]
Zhou, Yuke [2 ]
Hu, Tianyang [3 ]
Sun, Wenbin [1 ]
Zhang, Shuhui [4 ]
Wu, Jiapei [2 ]
Wang, Han [2 ]
机构
[1] China Univ Min & Technol, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Geog & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
[3] China Natl Environm Monitoring Ctr, State Environm Protect Key Lab Qual Control Enviro, Beijing 100012, Peoples R China
[4] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, State Key Lab Herbage Improvement & Grassland Agro, Lanzhou 730020, Peoples R China
关键词
vegetation phenology; NDVI; solar-induced chlorophyll fluorescence; climate change; Northeastern China; CLIMATE-CHANGE; FOREST; RESPONSES; PRECIPITATION; TEMPERATURE; ECOSYSTEMS; DYNAMICS; PLATEAU; DROUGHT; INDEXES;
D O I
10.3390/su15076012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vegetation phenology is a crucial biological indicator for monitoring changes in terrestrial ecosystems and global climate. Currently, there are limitations in using traditional vegetation indices for phenology monitoring (e.g., greenness saturation in high-density vegetation areas). Solar-induced chlorophyll fluorescence (SIF), a novel remote sensing product, has great potential in depicting seasonal vegetation dynamics across various regions with different vegetation covers and latitudes. In this study, based on the GOSIF and MODIS NDVI data from 2001 to 2020, we extracted vegetation phenological parameters in Northeastern China by using Double Logistic (D-L) fitting function and the dynamic threshold method. Then, we analyzed the discrepancy in phenological period and temporal trend derived from SIF and NDVI data at multiple spatiotemporal scales. Furthermore, we explored the response of vegetation phenology to climate change and the persistence of phenological trends (Hurst exponent) in Northeastern China. Generally, there is a significant difference in trends between SIF and NDVI, but with similar spatial patterns of phenology. However, the dates of key phenological parameters are distinct based on SIF and MODIS NDVI data. Specifically, the start of season (SOS) of SIF started later (about 10 days), and the end of season (EOS) ended earlier (about 36 days on average). In contrast, the fall attenuation of SIF showed a lag process compared to NDVI. This implies that the actual period of photosynthesis, that is, length of season (LOS), was shorter (by 46 days on average) than the greenness index. The position of peak (POP) is almost the same between them. The great difference in results from SIF and NDVI products indicated that the vegetation indexes seem to overestimate the time of vegetation photosynthesis in Northeastern China. The Hurst exponent identified that the future trend of SOS, EOS, and POP is dominated by weak inverse sustainability, indicating that the future trend may be opposite to the past. The future trend of LOSSIF and LOSNDVI are opposite; the former is dominated by weak inverse sustainability, and the latter is mainly weak positive sustainability. In addition, we speculate that the difference between SIF and NDVI phenology is closely related to their different responses to climate. The vegetation phenology estimated by SIF is mainly controlled by temperature, while NDVI is mainly controlled by precipitation and relative humidity. Different phenological periods based on SIF and NDVI showed inconsistent responses to pre-season climate. This may be the cause of the difference in the phenology of SIF and NDVI extraction. Our results imply that canopy structure-based vegetation indices overestimate the photosynthetic cycle, and the SIF product can better track the phenological changes. We conclude that the two data products provide a reference for monitoring the phenology of photosynthesis and vegetation greenness, and the results also have a certain significance for the response of plants to climate change.
引用
收藏
页数:21
相关论文
共 44 条
[1]   Spatiotemporal Trends and Attribution of Drought across China from 1901-2100 [J].
Ding, Yongxia ;
Peng, Shouzhang .
SUSTAINABILITY, 2020, 12 (02)
[2]   Rising CO2 and increased light exposure synergistically reduce marine primary productivity [J].
Gao, Kunshan ;
Xu, Juntian ;
Gao, Guang ;
Li, Yahe ;
Hutchins, David A. ;
Huang, Bangqin ;
Wang, Lei ;
Zheng, Ying ;
Jin, Peng ;
Cai, Xiaoni ;
Haeder, Donat-Peter ;
Li, Wei ;
Xu, Kai ;
Liu, Nana ;
Riebesell, Ulf .
NATURE CLIMATE CHANGE, 2012, 2 (07) :519-523
[3]   Terrestrial hydrological controls on land surface phenology of African savannas and woodlands [J].
Guan, Kaiyu ;
Wood, Eric F. ;
Medvigy, David ;
Kimball, John ;
Pan, Ming ;
Caylor, Kelly K. ;
Sheffield, Justin ;
Xu, Xiangtao ;
Jones, Matthew O. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2014, 119 (08) :1652-1669
[4]   Feasibility of Using MODIS Products to Simulate Sun-Induced Chlorophyll Fluorescence (SIF) in Boreal Forests [J].
Guo, Meng ;
Li, Jing ;
Huang, Shubo ;
Wen, Lixiang .
REMOTE SENSING, 2020, 12 (04)
[5]   Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements [J].
Hmimina, G. ;
Dufrene, E. ;
Pontailler, J. -Y ;
Delpierre, N. ;
Aubinet, M. ;
Caquet, B. ;
de Grandcourt, A. ;
Burban, B. ;
Flechard, C. ;
Granier, A. ;
Gross, P. ;
Heinesch, B. ;
Longdoz, B. ;
Moureaux, C. ;
Ourcival, J. -M. ;
Rambal, S. ;
Saint Andre, L. ;
Soudani, K. .
REMOTE SENSING OF ENVIRONMENT, 2013, 132 :145-158
[6]   Overview of the radiometric and biophysical performance of the MODIS vegetation indices [J].
Huete, A ;
Didan, K ;
Miura, T ;
Rodriguez, EP ;
Gao, X ;
Ferreira, LG .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (1-2) :195-213
[7]  
HURST HE, 1951, T AM SOC CIV ENG, V116, P770
[8]   First observations of global and seasonal terrestrial chlorophyll fluorescence from space [J].
Joiner, J. ;
Yoshida, Y. ;
Vasilkov, A. P. ;
Yoshida, Y. ;
Corp, L. A. ;
Middleton, E. M. .
BIOGEOSCIENCES, 2011, 8 (03) :637-651
[9]  
[李广泳 Li Guangyong], 2014, [生态学报, Acta Ecologica Sinica], V34, P3038
[10]   Response of vegetation restoration to climate change and human activities in Shaanxi-Gansu-Ningxia Region [J].
Li Shuangshuang ;
Yan Junping ;
Liu Xinyan ;
Wan Jia .
JOURNAL OF GEOGRAPHICAL SCIENCES, 2013, 23 (01) :98-112