Universal logic with encoded spin qubits in silicon

被引:45
作者
Weinstein, Aaron J. [1 ]
Reed, Matthew D. [1 ]
Jones, Aaron M. [1 ]
Andrews, Reed W. [1 ]
Barnes, David [1 ]
Blumoff, Jacob Z. [1 ]
Euliss, Larken E. [1 ]
Eng, Kevin [1 ]
Fong, Bryan H. [1 ]
Ha, Sieu D. [1 ]
Hulbert, Daniel R. [1 ]
Jackson, Clayton A. C. [1 ]
Jura, Michael [1 ]
Keating, Tyler E. [1 ]
Kerckhoff, Joseph [1 ]
Kiselev, Andrey A. [1 ]
Matten, Justine [1 ]
Sabbir, Golam [1 ]
Smith, Aaron [1 ]
Wright, Jeffrey [1 ]
Rakher, Matthew T. [1 ]
Ladd, Thaddeus D. [1 ]
Borselli, Matthew G. [1 ]
机构
[1] HRL Labs LLC, Malibu, CA 90265 USA
关键词
QUANTUM-DOT; COMPUTATION; TOMOGRAPHY; COHERENCE; PROCESSOR; FIDELITY; NOISE; GATE;
D O I
10.1038/s41586-023-05777-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computation features known examples of hardware acceleration for certain problems, but is challenging to realize because of its susceptibility to small errors from noise or imperfect control. The principles of fault tolerance may enable computational acceleration with imperfect hardware, but they place strict requirements on the character and correlation of errors(1). For many qubit technologies(2-21), some challenges to achieving fault tolerance can be traced to correlated errors arising from the need to control qubits by injecting microwave energy matching qubit resonances. Here we demonstrate an alternative approach to quantum computation that uses energy-degenerate encoded qubit states controlled by nearest-neighbour contact interactions that partially swap the spin states of electrons with those of their neighbours. Calibrated sequences of such partial swaps, implemented using only voltage pulses, allow universal quantum control while bypassing microwave-associated correlated error sources(1,22-28). We use an array of six Si-28/SiGe quantum dots, built using a platform that is capable of extending in two dimensions following processes used in conventional microelectronics(29). We quantify the operational fidelity of universal control of two encoded qubits using interleaved randomized benchmarking(30), finding a fidelity of 96.3% +/- 0.7% for encoded controlled NOT operations and 99.3% +/- .5% for encoded SWAP. The quantum coherence offered by enriched silicon(5-9,16,18,20,22,27,29,31-37), the all-electrical and low-crosstalk-control of partial swap operations(1,22-28) and the configurable insensitivity of our encoding to certain error sources(28,33,34,38) all combine to offer a strong pathway towards scalable fault tolerance and computational advantage.
引用
收藏
页码:817 / +
页数:19
相关论文
共 68 条
[1]   Quantifying error and leakage in an encoded Si/SiGe triple-dot qubit [J].
Andrews, Reed W. ;
Jones, Cody ;
Reed, Matthew D. ;
Jones, Aaron M. ;
Ha, Sieu D. ;
Jura, Michael P. ;
Kerckhoff, Joseph ;
Levendorf, Mark ;
Meenehan, Sean ;
Merkel, Seth T. ;
Smith, Aaron ;
Sun, Bo ;
Weinstein, Aaron J. ;
Rakher, Matthew T. ;
Ladd, Thaddeus D. ;
Borselli, Matthew G. .
NATURE NANOTECHNOLOGY, 2019, 14 (08) :747-+
[2]   Single-electron operations in a foundry-fabricated array of quantum dots [J].
Ansaloni, Fabio ;
Chatterjee, Anasua ;
Bohuslavskyi, Heorhii ;
Bertrand, Benoit ;
Hutin, Louis ;
Vinet, Maud ;
Kuemmeth, Ferdinand .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Universal fault-tolerant quantum computation on decoherence-free subspaces [J].
Bacon, D ;
Kempe, J ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1758-1761
[5]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[6]   A new FDSOI spin qubit platform with 40nm effective control pitch [J].
Bedecarrats, T. ;
Paz, B. Cardoso ;
Diaz, B. Martinez ;
Niebojewski, H. ;
Bertrand, B. ;
Rambal, N. ;
Comboroure, C. ;
Sarrazin, A. ;
Boulard, F. ;
Guyez, E. ;
Hartmann, J-M ;
Morand, Y. ;
Magalhaes-Lucas, A. ;
Nowak, E. ;
Catapano, E. ;
Casse, M. ;
Urdampilleta, M. ;
Niquet, Y-M ;
Gaillard, F. ;
De Franceschi, S. ;
Meunier, T. ;
Vinet, M. .
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
[7]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[8]   Circuit quantum electrodynamics [J].
Blais, Alexandre ;
Grimsmo, Arne L. ;
Girvin, S. M. ;
Wallraffe, Andreas .
REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
[9]   Fast and High-Fidelity State Preparation and Measurement in Triple-Quantum-Dot Spin Qubits [J].
Blumoff, Jacob Z. ;
Pan, Andrew S. ;
Keating, Tyler E. ;
Andrews, Reed W. ;
Barnes, David W. ;
Brecht, Teresa L. ;
Croke, Edward T. ;
Euliss, Larken E. ;
Fast, Jacob A. ;
Jackson, Clayton A. C. ;
Jones, Aaron M. ;
Kerckhoff, Joseph ;
Lanza, Robert K. ;
Raach, Kate ;
Thomas, Bryan J. ;
Velunta, Roland ;
Weinstein, Aaron J. ;
Ladd, Thaddeus D. ;
Eng, Kevin ;
Borselli, Matthew G. ;
Hunter, Andrew T. ;
Rakher, Matthew T. .
PRX QUANTUM, 2022, 3 (01)
[10]   Undoped accumulation-mode Si/SiGe quantum dots [J].
Borselli, M. G. ;
Eng, K. ;
Ross, R. S. ;
Hazard, T. M. ;
Holabird, K. S. ;
Huang, B. ;
Kiselev, A. A. ;
Deelman, P. W. ;
Warren, L. D. ;
Milosavljevic, I. ;
Schmitz, A. E. ;
Sokolich, M. ;
Gyure, M. F. ;
Hunter, A. T. .
NANOTECHNOLOGY, 2015, 26 (37)