Effects of Different Exogenous Organic Materials on Improving Soil Fertility in Coastal Saline-Alkali Soil

被引:7
|
作者
Zuo, Wengang [1 ,2 ]
Xu, Lu [1 ]
Qiu, Meihua [3 ]
Yi, Siqiang [1 ]
Wang, Yimin [1 ]
Shen, Chao [1 ]
Zhao, Yilin [1 ]
Li, Yunlong [1 ]
Gu, Chuanhui [4 ]
Shan, Yuhua [1 ,2 ,5 ]
Bai, Yanchao [1 ,2 ,5 ]
机构
[1] Yangzhou Univ, Coll Environm Sci & Engn, Yangzhou 225127, Peoples R China
[2] Yangzhou Univ, Key Lab Arable Land Qual Monitoring & Evaluat, Key Lab Saline Alkali Soil Improvement & Utilizat, Minist Agr & Rural Affairs, Yangzhou 225127, Peoples R China
[3] Jiangsu Cultivated Land Qual & Agroenvironm Protec, Dept Agr & Rural Affairs Jiangsu Prov, Nanjing 210003, Peoples R China
[4] Duke Kunshan Univ, Environm Res Ctr, Kunshan 215316, Peoples R China
[5] Jiangsu Collaborat Innovat Ctr Solid Organ Waste R, Nanjing 210095, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 01期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
coastal saline-alkali soil; soil fertility improvement; exogenous organic material; soil barrier factor; SEWAGE-SLUDGE; PHYSICAL-PROPERTIES; MATTER; FOREST; CARBON; AGGREGATE; DYNAMICS; DECOMPOSITION; AMENDMENT; COMPOST;
D O I
10.3390/agronomy13010061
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The coastal saline-alkali soil in eastern China is an important reserve arable land resource. Adding exogenous organic material is an effective way to improve soil fertility and promote the conversion of saline-alkali soil to agricultural soil. In this study, a field plot experiment was used to investigate the influences of different organic materials (vinegar residue, VR; sewage sludge, SS; vermicompost, VC) on the reduction in salinity-alkalinity barrier factors, the accumulation of soil organic carbon (SOC), and the improvement in soil fertility in saline-alkali soil. The results indicated that applying different types of exogenous organic materials reduced soil electrical conductivity (EC) and pH, promoted SOC accumulation, and increased the barley yield. With the same application rate, VR application was more beneficial in reducing soil EC and pH, accumulating SOC, and increasing barley yield compared to SS and VC applications. In particular, the barley yield with VR application was higher than that with SS and VC applications by 18.4% and 26.6% on average, respectively, during the two-year experiment. Correlation and path analysis revealed that the barley yield was significantly negatively correlated with soil barrier factors (EC and pH), but EC in SS and VC-treated soils had an indirect negative effect on barley yield, while EC in VR-treated soil had a direct negative effect (-2.24). In addition, the direct (-4.46) and indirect (5.39) contributions of SOC to barley yield were higher with VR than those with SS and VC, while the direct contribution of soil aggregate to barley yield was lower with VR than that with SS and VC. Therefore, compared with SS and VC applications, VR application led to a fast reduction in soil barrier factors and the rapid accumulation of SOC, which were more beneficial for increasing barley yields in saline-alkali soil.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Effect of combined nitrogen and phosphorus fertilization on summer maize yield and soil fertility in coastal saline-alkali land
    Ma, Changjian
    Wu, Wenbiao
    Hou, Peng
    Wang, Yue
    Li, Bowen
    Yuan, Huabin
    Liu, Lining
    Wang, Xuejun
    Sun, Zeqiang
    Li, Yan
    AGRICULTURAL WATER MANAGEMENT, 2025, 309
  • [22] Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline-alkali soil region
    Qu, Yunke
    Tang, Jie
    Liu, Ben
    Lyu, Hang
    Duan, Yucong
    Yang, Yao
    Wang, Sining
    Li, Zhaoyang
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [23] Revitalizing coastal saline-alkali soil with biochar application for improved crop growth
    Cui, Liqiang
    Liu, Yuming
    Yan, Jinlong
    Hina, Kiran
    Hussain, Qaiser
    Qiu, Tianjing
    Zhu, Jinye
    ECOLOGICAL ENGINEERING, 2022, 179
  • [24] Application of biochar and organic fertilizer to saline-alkali soil in the Yellow River Delta: Effects on soil water, salinity, nutrients, and maize yield
    Wang, Shibin
    Gao, Peiling
    Zhang, Qingwen
    Shi, Yulong
    Guo, Xianglin
    Lv, Qingxin
    Wu, Wei
    Zhang, Xue
    Li, Mengzhao
    Meng, Qingmei
    SOIL USE AND MANAGEMENT, 2022, 38 (04) : 1679 - 1692
  • [25] Application of Organic Wastes to Primary Saline-alkali Soil in Northeast China: Effects on Soil Available Nutrients and Salt Ions
    Chen, Xiaodong
    Opoku-Kwanowaa, Yaa
    Li, Jianming
    Wu, Jinggui
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2020, 51 (09) : 1238 - 1252
  • [26] The Influence of Green Manure Planting on the Spectroscopic Characteristics of Dissolved Organic Matter in Freshwater-Leached Saline-Alkali Soil at Different Depths
    Wang, Yuhao
    Yin, Chengjie
    Wang, Jingkuan
    Ji, Xiaohui
    Liu, Xinwei
    AGRONOMY-BASEL, 2024, 14 (07):
  • [27] Effects of the interaction between biochar and nutrients on soil organic carbon sequestration in soda saline-alkali grassland: A review
    Gong, Heyang
    Li, Yuefen
    Li, Shujie
    GLOBAL ECOLOGY AND CONSERVATION, 2021, 26
  • [28] Gypsum and organic materials improved soil quality and crop production in saline-alkali on the loess plateau of China
    Tian, Ye
    Jiang, Wenting
    Chen, Guoliang
    Wang, Xiukang
    Li, Tingting
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2024, 12
  • [29] Organic fertilizer enhances rice growth in severe saline-alkali soil by increasing soil bacterial diversity
    Zhang, Zhengkun
    Liu, Hong
    Liu, Xiaoxiao
    Chen, Yong
    Lu, Yang
    Shen, Minchong
    Dang, Keke
    Zhao, Yu
    Dong, Yuanhua
    Li, Qiyun
    Li, Jiangang
    SOIL USE AND MANAGEMENT, 2022, 38 (01) : 964 - 977
  • [30] Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China
    Cui, Qian
    Xia, Jiangbao
    Yang, Hongjun
    Liu, Jingtao
    Shao, Pengshuai
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 756