Positive radial solutions for a class of (p, q) Laplacian in a ball

被引:3
作者
Hai, D. D. [1 ]
Shivaji, R. [2 ]
Wang, X. [3 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[3] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
(p; q); Laplacian; Infinite semipositone; Positive solutions; EXISTENCE; EQUATION;
D O I
10.1007/s11117-022-00959-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a positive radial solution to the (p, q) Laplacian problem {-Delta(p)u - Delta(q)u = lambda f(u) in Omega, u = 0 on partial derivative Omega, where p > q > 1, Delta(r)u = div(vertical bar Delta u vertical bar(r-2)del u), Omega = B(0, 1) is the open unit ball in R-n, f:(0, infinity) -> R is p-sublinear at infinity with possible singularity and infinite semipositone structure at 0, and lambda > 0 is a large parameter.
引用
收藏
页数:8
相关论文
共 50 条
[41]   ON POSITIVE SOLUTIONS FOR A CLASS OF ELLIPTIC SYSTEMS INVOLVING THE p(x)-LAPLACIAN WITH MULTIPLE PARAMETERS [J].
Afrouzi, Ghasem Alizadeh ;
Shakeri, Saleh ;
Nguyen Thanh Chung .
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (04) :153-164
[42]   Radial Positive Solutions for Problems Involving φ-Laplacian Operators with Weights [J].
Belkahla, Sywar ;
Khamessi, Bilel ;
El Abidine, Zagharide Zine .
JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2024, 20 (02) :153-171
[43]   Positive solutions for the Neumann p-Laplacian [J].
Averna, Diego ;
Papageorgiou, Nikolaos S. ;
Tornatore, Elisabetta .
MONATSHEFTE FUR MATHEMATIK, 2018, 185 (04) :557-573
[44]   Positive solutions for a class of p-Laplacian systems with multiple parameters [J].
Ali, Jaffar ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1013-1019
[45]   An existence result on positive solutions for a class of p-Laplacian systems [J].
Hai, DD ;
Shivaji, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (07) :1007-1010
[46]   Three positive solutions for a nonlinear partial discrete Dirichlet problem with (p,q)-Laplacian operator [J].
Xiong, Feng ;
Zhou, Zhan .
BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
[47]   Existence of solutions for the (p, q)-Laplacian equation with nonlocal Choquard reaction [J].
Xie, Xiaoliang ;
Wang, Tianfang ;
Zhang, Wen .
APPLIED MATHEMATICS LETTERS, 2023, 135
[48]   Existence of periodic solutions for a damped vibration problem with (q, p) - Laplacian [J].
Yang, Xiaoxia ;
Chen, Haibo .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (01) :51-66
[49]   Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities [J].
Tao, Mengfei ;
Zhang, Binlin .
ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) :1332-1351
[50]   Positive solutions of IBVPs for q-difference equations with p-Laplacian on infinite interval [J].
Yu, Changlong ;
Wang, Jufang ;
Han, Huode ;
Li, Jing .
AIMS MATHEMATICS, 2021, 6 (08) :8404-8414