Positive radial solutions for a class of (p, q) Laplacian in a ball

被引:3
作者
Hai, D. D. [1 ]
Shivaji, R. [2 ]
Wang, X. [3 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[3] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
(p; q); Laplacian; Infinite semipositone; Positive solutions; EXISTENCE; EQUATION;
D O I
10.1007/s11117-022-00959-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a positive radial solution to the (p, q) Laplacian problem {-Delta(p)u - Delta(q)u = lambda f(u) in Omega, u = 0 on partial derivative Omega, where p > q > 1, Delta(r)u = div(vertical bar Delta u vertical bar(r-2)del u), Omega = B(0, 1) is the open unit ball in R-n, f:(0, infinity) -> R is p-sublinear at infinity with possible singularity and infinite semipositone structure at 0, and lambda > 0 is a large parameter.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Positive solutions for a class of singular fractional boundary value problem with p-Laplacian [J].
Panigrahi, Saroj ;
Kumar, Raghvendra .
JOURNAL OF APPLIED ANALYSIS, 2024,
[22]   POSITIVE SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN PROBLEMS [J].
Afrouzi, G. A. ;
Ghorbani, H. .
GLASGOW MATHEMATICAL JOURNAL, 2009, 51 :571-578
[23]   RADIAL SYMMETRY OF POSITIVE SOLUTIONS TO A CLASS OF FRACTIONAL LAPLACIAN WITH A SINGULAR NONLINEARITY [J].
Cao, Linfen ;
Wang, Xiaoshan .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) :1449-1460
[24]   EXISTENCE AND ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR A CLASS OF (p(x), q(x)) - LAPLACIAN SYSTEMS [J].
Yin, Honghui ;
Yang, Zuodong .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (03) :403-415
[25]   Positive Solutions for a Class of Discrete Mixed Boundary Value Problems with the (p, q)-Laplacian Operator [J].
Li, Cuiping ;
Zhou, Zhan .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
[26]   Positive solutions for a class of q-fractional boundary value problems with p-Laplacian [J].
Zhao, Jidong .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (04) :442-450
[27]   On Symmetric Solutions for (p, q)-Laplacian Equations in RN with Critical Terms [J].
Baldelli, Laura ;
Brizi, Ylenia ;
Filippucci, Roberta .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (04)
[28]   POSITIVE SOLUTIONS OF DISCRETE BOUNDARY VALUE PROBLEMS WITH THE (p, q)-LAPLACIAN OPERATOR [J].
Nastasi, Antonella ;
Vetro, Calogero ;
Vetro, Francesca .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
[29]   Two positive solutions for a Dirichlet problem with the (p,q)-Laplacian [J].
Sciammetta, Angela ;
Tornatore, Elisabetta .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (05) :1004-1013
[30]   Solutions for a class of problems driven by an anisotropic (p, q)-Laplacian type operator [J].
Tavares, Leandro .
COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (03) :533-550