Positive radial solutions for a class of (p, q) Laplacian in a ball

被引:3
作者
Hai, D. D. [1 ]
Shivaji, R. [2 ]
Wang, X. [3 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[3] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
(p; q); Laplacian; Infinite semipositone; Positive solutions; EXISTENCE; EQUATION;
D O I
10.1007/s11117-022-00959-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a positive radial solution to the (p, q) Laplacian problem {-Delta(p)u - Delta(q)u = lambda f(u) in Omega, u = 0 on partial derivative Omega, where p > q > 1, Delta(r)u = div(vertical bar Delta u vertical bar(r-2)del u), Omega = B(0, 1) is the open unit ball in R-n, f:(0, infinity) -> R is p-sublinear at infinity with possible singularity and infinite semipositone structure at 0, and lambda > 0 is a large parameter.
引用
收藏
页数:8
相关论文
共 50 条
[11]   ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS FOR THE RADIAL P-LAPLACIAN EQUATION [J].
Ben Othman, Sonia ;
Maagli, Habib .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
[12]   EXISTENCE AND MULTIPLICITY OF POSITIVE WEAK SOLUTIONS FOR A NEW CLASS OF (P; Q)-LAPLACIAN SYSTEMS [J].
Guefaifia, Rafik ;
Boulaaras, Salah ;
Zuo, Jiabin ;
Agarwal, Praveen .
MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) :861-872
[13]   Positive radial solutions to classes of p-Laplacian systems on the exterior of a ball with nonlinear boundary conditions [J].
Son, Byungjae ;
Wang, Peiyong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
[14]   Radial and non-radial solutions for a class of (p, q)-Laplace equations involving weights [J].
Ho, Ky ;
Perera, Kanishka ;
Sim, Inbo .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2025,
[15]   Multiplicity of positive solutions for a p-q-Laplacian system with concave and critical nonlinearities [J].
Li, Qin ;
Yang, Zuodong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) :660-680
[16]   On a Positive Solutions for (p, q)-Laplacian Steklov Problem with Two Parameters [J].
Boukhsas, A. ;
Zerouali, A. ;
Chakrone, O. ;
Karim, B. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
[17]   Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains [J].
Chu, K. D. ;
Hai, D. D. ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) :510-525
[18]   POSITIVE SOLUTIONS FOR SINGULAR (p, q)-LAPLACIAN EQUATIONS WITH NEGATIVE PERTURBATION [J].
Papageorgiou, Nikolaos S. ;
Vetro, Clogero ;
Vetro, Francesca .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (25)
[19]   COMPARISON AND POSITIVE SOLUTIONS FOR PROBLEMS WITH THE (p, q)-LAPLACIAN AND A CONVECTION TERM [J].
Faria, Luiz F. O. ;
Miyagaki, Olimpio H. ;
Motreanu, Dumitru .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) :687-698
[20]   Multiple solutions for a class of fractional (p, q)-Laplacian system in RN [J].
Chen, Caisheng ;
Bao, Jinfeng ;
Song, Hongxue .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (03)