Positive radial solutions for a class of (p, q) Laplacian in a ball

被引:2
作者
Hai, D. D. [1 ]
Shivaji, R. [2 ]
Wang, X. [3 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[3] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
(p; q); Laplacian; Infinite semipositone; Positive solutions; EXISTENCE; EQUATION;
D O I
10.1007/s11117-022-00959-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a positive radial solution to the (p, q) Laplacian problem {-Delta(p)u - Delta(q)u = lambda f(u) in Omega, u = 0 on partial derivative Omega, where p > q > 1, Delta(r)u = div(vertical bar Delta u vertical bar(r-2)del u), Omega = B(0, 1) is the open unit ball in R-n, f:(0, infinity) -> R is p-sublinear at infinity with possible singularity and infinite semipositone structure at 0, and lambda > 0 is a large parameter.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Positive radial solutions for p-Laplacian systems
    Donal O’Regan
    Haiyan Wang
    Aequationes mathematicae, 2008, 75 : 43 - 50
  • [12] EXISTENCE AND MULTIPLICITY OF POSITIVE WEAK SOLUTIONS FOR A NEW CLASS OF (P; Q)-LAPLACIAN SYSTEMS
    Guefaifia, Rafik
    Boulaaras, Salah
    Zuo, Jiabin
    Agarwal, Praveen
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 861 - 872
  • [13] Positive radial solutions to classes of p-Laplacian systems on the exterior of a ball with nonlinear boundary conditions
    Son, Byungjae
    Wang, Peiyong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
  • [14] Multiplicity of positive solutions for a p-q-Laplacian system with concave and critical nonlinearities
    Li, Qin
    Yang, Zuodong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 660 - 680
  • [15] On a Positive Solutions for (p, q)-Laplacian Steklov Problem with Two Parameters
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [16] Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains
    Chu, K. D.
    Hai, D. D.
    Shivaji, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) : 510 - 525
  • [17] COMPARISON AND POSITIVE SOLUTIONS FOR PROBLEMS WITH THE (p, q)-LAPLACIAN AND A CONVECTION TERM
    Faria, Luiz F. O.
    Miyagaki, Olimpio H.
    Motreanu, Dumitru
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) : 687 - 698
  • [18] Multiple solutions for a class of fractional (p, q)-Laplacian system in RN
    Chen, Caisheng
    Bao, Jinfeng
    Song, Hongxue
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (03)
  • [19] POSITIVE SOLUTIONS FOR SINGULAR (p, q)-LAPLACIAN EQUATIONS WITH NEGATIVE PERTURBATION
    Papageorgiou, Nikolaos S.
    Vetro, Clogero
    Vetro, Francesca
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (25)
  • [20] Positive solutions for a class of singular fractional boundary value problem with p-Laplacian
    Panigrahi, Saroj
    Kumar, Raghvendra
    JOURNAL OF APPLIED ANALYSIS, 2024,