Positive radial solutions for a class of (p, q) Laplacian in a ball

被引:3
作者
Hai, D. D. [1 ]
Shivaji, R. [2 ]
Wang, X. [3 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[3] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
(p; q); Laplacian; Infinite semipositone; Positive solutions; EXISTENCE; EQUATION;
D O I
10.1007/s11117-022-00959-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a positive radial solution to the (p, q) Laplacian problem {-Delta(p)u - Delta(q)u = lambda f(u) in Omega, u = 0 on partial derivative Omega, where p > q > 1, Delta(r)u = div(vertical bar Delta u vertical bar(r-2)del u), Omega = B(0, 1) is the open unit ball in R-n, f:(0, infinity) -> R is p-sublinear at infinity with possible singularity and infinite semipositone structure at 0, and lambda > 0 is a large parameter.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Positive radial solutions for a class of (p, q) Laplacian in a ball [J].
D. D. Hai ;
R. Shivaji ;
X. Wang .
Positivity, 2023, 27
[2]   UNIQUENESS OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE p-LAPLACIAN PROBLEMS IN A BALL [J].
Chu, K. D. ;
Hai, D. D. ;
Shivaji, R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) :2059-2067
[3]   Positive solutions for a p - q-Laplacian system with critical nonlinearities [J].
Yin, Honghui ;
Han, Yefei .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) :7110-7124
[4]   Nonexistence of positive entire solutions for a class of (p, q)-Laplacian elliptic systems [J].
Chen, Caisheng ;
Shi, Lanfang ;
Zhu, Shenglan .
APPLIED MATHEMATICS LETTERS, 2011, 24 (06) :831-837
[5]   Existence of positive solutions for a class of (p (x), q (x))-Laplacian systems [J].
Guefaifia, Rafik ;
Boulaaras, Salah .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2018, 67 (01) :93-103
[6]   Analysis of positive radial solutions for singular superlinear p-Laplacian systems on the exterior of a ball [J].
Son, Byungjae ;
Wang, Peiyong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
[7]   Multiplicity of positive solutions for afractional p&q-Laplacian problem in RN [J].
Ambrosio, Vincenzo ;
Isernia, Teresa .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
[8]   Positive radial solutions for p-Laplacian systems [J].
O'Regan, Donal ;
Wang, Haiyan .
AEQUATIONES MATHEMATICAE, 2008, 75 (1-2) :43-50
[9]   Positive radial solutions for p-Laplacian systems [J].
Donal O’Regan ;
Haiyan Wang .
Aequationes mathematicae, 2008, 75 :43-50
[10]   Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in a ball [J].
Cao, Linfen ;
Fan, Linlin .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (04) :667-679