共 50 条
Positive radial solutions for a class of (p, q) Laplacian in a ball
被引:2
|作者:
Hai, D. D.
[1
]
Shivaji, R.
[2
]
Wang, X.
[3
]
机构:
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[3] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
来源:
关键词:
(p;
q);
Laplacian;
Infinite semipositone;
Positive solutions;
EXISTENCE;
EQUATION;
D O I:
10.1007/s11117-022-00959-1
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove the existence of a positive radial solution to the (p, q) Laplacian problem {-Delta(p)u - Delta(q)u = lambda f(u) in Omega, u = 0 on partial derivative Omega, where p > q > 1, Delta(r)u = div(vertical bar Delta u vertical bar(r-2)del u), Omega = B(0, 1) is the open unit ball in R-n, f:(0, infinity) -> R is p-sublinear at infinity with possible singularity and infinite semipositone structure at 0, and lambda > 0 is a large parameter.
引用
收藏
页数:8
相关论文