Positive radial solutions for a class of (p, q) Laplacian in a ball

被引:3
作者
Hai, D. D. [1 ]
Shivaji, R. [2 ]
Wang, X. [3 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Cartolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[3] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
(p; q); Laplacian; Infinite semipositone; Positive solutions; EXISTENCE; EQUATION;
D O I
10.1007/s11117-022-00959-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a positive radial solution to the (p, q) Laplacian problem {-Delta(p)u - Delta(q)u = lambda f(u) in Omega, u = 0 on partial derivative Omega, where p > q > 1, Delta(r)u = div(vertical bar Delta u vertical bar(r-2)del u), Omega = B(0, 1) is the open unit ball in R-n, f:(0, infinity) -> R is p-sublinear at infinity with possible singularity and infinite semipositone structure at 0, and lambda > 0 is a large parameter.
引用
收藏
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 1993, Results Math.
[2]  
[Anonymous], 1997, DEGRUYTER SERIES NON
[3]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[4]   On positive solutions for (p, q)-Laplace equations with two parameters [J].
Bobkov, Vladimir ;
Tanaka, Mieko .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :3277-3301
[5]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22
[6]  
Das U., 2020, ELECTRON J QUAL THEO, V2020, P7
[7]   COMPARISON AND POSITIVE SOLUTIONS FOR PROBLEMS WITH THE (p, q)-LAPLACIAN AND A CONVECTION TERM [J].
Faria, Luiz F. O. ;
Miyagaki, Olimpio H. ;
Motreanu, Dumitru .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) :687-698
[8]   Existence of positive solutions for a class of p&q elliptic problems with critical growth on RN [J].
Figueiredo, Giovany M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) :507-518
[9]   On a class of singular p-Laplacian boundary value problems [J].
Hai, D. D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (02) :619-626
[10]   An existence result on positive solutions for a class of p-Laplacian systems [J].
Hai, DD ;
Shivaji, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (07) :1007-1010