Prediction of network level pavement treatment types using multi-classification machine learning algorithms

被引:4
作者
Jooste, Fritz J. [1 ]
Costello, Seosamh B. [2 ]
Rainsford, Sean [3 ]
机构
[1] Lonrix Ltd, Hamilton, New Zealand
[2] Univ Auckland, Dept Civil & Environm Engn, Auckland, New Zealand
[3] Fulton Hogan, Christchurch, New Zealand
关键词
Pavement management; machine learning; forward works planning; treatment classification; prediction; pavement maintenance;
D O I
10.1080/14680629.2021.2019091
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The challenge in pavement management is to ensure that the correct treatment is applied to each segment of road at the appropriate time. Although pavement management systems assist with such predictions, pavement engineers further investigate and, ultimately, decide on the timing and type of treatment to be applied. While it is understandable that these might differ to some extent, large disparities between the two are coming under increased scrutiny. In order to assist with this challenge, this research develops a model for the prediction of pavement treatment types using multi-classification machine learning algorithms. The model attempts to predict what particular treatment type (reseal, overlay or rehabilitation) would be undertaken, based on available inventory and condition data. It also highlights the categories of data that were most influential in the prediction. The model was over 82% accurate in predicting the untreated segments and 80% accurate in predicting the treated segments.
引用
收藏
页码:410 / 426
页数:17
相关论文
共 50 条
  • [31] Diabetes Prediction using Machine Learning Algorithms
    Mujumdar, Aishwarya
    Vaidehi, V.
    [J]. 2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 292 - 299
  • [32] Multi-classification of national fitness test grades based on statistical analysis and machine learning
    Yang, Qian
    Wang, Xueli
    Cao, Xianbing
    Liu, Shuai
    Xie, Feng
    Li, Yumei
    [J]. PLOS ONE, 2023, 18 (12):
  • [33] A Hybrid Model for Prediction of Diabetes Using Machine Learning Classification Algorithms and Random Projection
    Poornima, V.
    RamyaDevi, R.
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2024, 139 (03) : 1437 - 1449
  • [34] Analysis of Machine Learning Algorithms for Classification and Prediction of Heart Disease
    Boyko, Nataliya
    Dosiak, Iryna
    [J]. IDDM 2021: INFORMATICS & DATA-DRIVEN MEDICINE: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE (IDDM 2021), 2021, 3038 : 233 - 249
  • [35] Optimizing Machine Learning Algorithms for Heart Disease Classification and Prediction
    El-Ibrahimi, Abdeljalil
    Terrada, Oumaima
    El Gannour, Oussama
    Cherradi, Bouchaib
    El Abbassi, Ahmed
    Bouattane, Omar
    [J]. INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (15) : 61 - 76
  • [36] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ishan Ayus
    Narayanan Natarajan
    Deepak Gupta
    [J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 2437 - 2447
  • [37] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ayus, Ishan
    Natarajan, Narayanan
    Gupta, Deepak
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (04) : 2437 - 2447
  • [38] Potential of machine learning algorithms in groundwater level prediction using temporal gravity data
    Sarkar, Himangshu
    Goriwale, Swastik Sunil
    Ghosh, Jayanta Kumar
    Ojha, Chandra Shekhar Prasad
    Ghosh, Sanjay Kumar
    [J]. GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2024, 25
  • [39] Groundwater level prediction using machine learning algorithms in a drought-prone area
    Quoc Bao Pham
    Kumar, Manish
    Di Nunno, Fabio
    Elbeltagi, Ahmed
    Granata, Francesco
    Islam, Abu Reza Md Towfiqul
    Talukdar, Swapan
    X Cuong Nguyen
    Ahmed, Ali Najah
    Duong Tran Anh
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (13) : 10751 - 10773
  • [40] Groundwater level prediction using machine learning algorithms in a drought-prone area
    Quoc Bao Pham
    Manish Kumar
    Fabio Di Nunno
    Ahmed Elbeltagi
    Francesco Granata
    Abu Reza Md. Towfiqul Islam
    Swapan Talukdar
    X. Cuong Nguyen
    Ali Najah Ahmed
    Duong Tran Anh
    [J]. Neural Computing and Applications, 2022, 34 : 10751 - 10773