机构:
Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Via Per Arnesano, I-73100 Lecce, ItalyUniv Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
Carbotti, Alessandro
[2
]
Cito, Simone
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Via Per Arnesano, I-73100 Lecce, ItalyUniv Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
Cito, Simone
[2
]
La Manna, Domenico Angelo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, FinlandUniv Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
La Manna, Domenico Angelo
[1
]
论文数: 引用数:
h-index:
机构:
Pallara, Diego
[2
,3
]
机构:
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
[2] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Via Per Arnesano, I-73100 Lecce, Italy
[3] Ist Nazl Fis Nucl, Sez Lecce, Via Per Arnesano, I-73100 Lecce, Italy
We prove the Gamma-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s -> 1(-). Our definition of fractional perimeter comes from that of the fractional powers of Ornstein Uhlenbeck operator given via Bochner subordination formula. As a typical feature of the Gaussian setting, the constant appearing in front of the Gamma-limit does not depend on the dimension.