Gamma-convergence of Gaussian fractions perimeter

被引:2
|
作者
Carbotti, Alessandro [2 ]
Cito, Simone [2 ]
La Manna, Domenico Angelo [1 ]
Pallara, Diego [2 ,3 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
[2] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Via Per Arnesano, I-73100 Lecce, Italy
[3] Ist Nazl Fis Nucl, Sez Lecce, Via Per Arnesano, I-73100 Lecce, Italy
基金
芬兰科学院;
关键词
Fractional perimeters; Gaussian analysis; Gamma-convergence; EXTENSION PROBLEM; INEQUALITY; CONNECTIONS;
D O I
10.1515/acv-2021-0032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the Gamma-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s -> 1(-). Our definition of fractional perimeter comes from that of the fractional powers of Ornstein Uhlenbeck operator given via Bochner subordination formula. As a typical feature of the Gaussian setting, the constant appearing in front of the Gamma-limit does not depend on the dimension.
引用
收藏
页码:571 / 595
页数:25
相关论文
共 37 条