Gamma-convergence of Gaussian fractions perimeter

被引:2
|
作者
Carbotti, Alessandro [2 ]
Cito, Simone [2 ]
La Manna, Domenico Angelo [1 ]
Pallara, Diego [2 ,3 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, FI-40014 Jyvaskyla, Finland
[2] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Via Per Arnesano, I-73100 Lecce, Italy
[3] Ist Nazl Fis Nucl, Sez Lecce, Via Per Arnesano, I-73100 Lecce, Italy
基金
芬兰科学院;
关键词
Fractional perimeters; Gaussian analysis; Gamma-convergence; EXTENSION PROBLEM; INEQUALITY; CONNECTIONS;
D O I
10.1515/acv-2021-0032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the Gamma-convergence of the renormalised Gaussian fractional s-perimeter to the Gaussian perimeter as s -> 1(-). Our definition of fractional perimeter comes from that of the fractional powers of Ornstein Uhlenbeck operator given via Bochner subordination formula. As a typical feature of the Gaussian setting, the constant appearing in front of the Gamma-limit does not depend on the dimension.
引用
收藏
页码:571 / 595
页数:25
相关论文
共 50 条
  • [1] Gamma-convergence of nonlocal perimeter functionals
    Ambrosio, Luigi
    De Philippis, Guido
    Martinazzi, Luca
    MANUSCRIPTA MATHEMATICA, 2011, 134 (3-4) : 377 - 403
  • [2] Gamma-convergence of nonlocal perimeter functionals
    Luigi Ambrosio
    Guido De Philippis
    Luca Martinazzi
    Manuscripta Mathematica, 2011, 134 : 377 - 403
  • [3] Gamma-convergence of a nonlocal perimeter arising in adversarial machine learning
    Bungert, Leon
    Stinson, Kerrek
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (05)
  • [4] ABSTRACT GAMMA-CONVERGENCE
    FRANZONI, T
    LECTURE NOTES IN MATHEMATICS, 1986, 1190 : 229 - 241
  • [5] ON A DEFINITION OF GAMMA-CONVERGENCE OF MEASURES
    DEGIORGI, E
    LECTURE NOTES IN MATHEMATICS, 1984, 1091 : 150 - 159
  • [6] A Characterization theorem for the gamma-convergence
    Bucur, D.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 323 (08):
  • [7] A characterization theory for the gamma-convergence
    Bucur, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (08): : 883 - 888
  • [8] WIENER CRITERION AND GAMMA-CONVERGENCE
    DALMASO, G
    MOSCO, U
    APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 15 (01): : 15 - 63
  • [9] GAMMA-CONVERGENCE AND CALCULUS OF VARIATIONS
    DEGIORGI, E
    DALMASO, G
    LECTURE NOTES IN MATHEMATICS, 1983, 979 : 121 - 143
  • [10] ASYMPTOTIC DEVELOPMENT BY GAMMA-CONVERGENCE
    ANZELLOTTI, G
    BALDO, S
    APPLIED MATHEMATICS AND OPTIMIZATION, 1993, 27 (02): : 105 - 123