Existence and multiplicity of weak solutions for eigenvalue Robin problem with weighted p(.)-Laplacian

被引:10
作者
Aydin, Ismail [1 ]
Unal, Cihan [2 ]
机构
[1] Sinop Univ, Fac Arts & Sci, Dept Math, Sinop, Turkey
[2] Select Placement Ctr, Republ Turkey, Ankara, Turkey
关键词
Weak solution; p(.)-Laplacian; Mountain Pass Lemma; Fountain Theorem; Ekeland variational principle; EXPONENT SOBOLEV SPACES; SMOOTH FUNCTIONS; DENSITY; C(INFINITY)(0)(R-N);
D O I
10.1007/s11587-021-00621-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By applying Mountain Pass Lemma, Ekeland's variational principle and Fountain Theorem, we prove the existence and multiplicity of solutions for the following Robin problem {-div(a(x) vertical bar del u vertical bar(p(x)-2) del u) =lambda b(x)vertical bar u vertical bar(q(x)-2) u, x is an element of Omega a(x) vertical bar del u vertical bar(p(x)-2) partial derivative u/partial derivative u + beta(x)vertical bar u vertical bar(p(x)-2) u = 0, x is an element of partial derivative Omega, under some appropriate conditions in the space W-a,b(1, p(.)) (Omega).
引用
收藏
页码:511 / 528
页数:18
相关论文
共 35 条