Entropy generation due to MHD Falkner-Skan flow of Casson fluid over a wedge: A numerical study

被引:2
|
作者
Abrar, Muhammad N. [1 ]
Yun, Wang [2 ]
Sharaf, Mohamed [3 ]
机构
[1] Natl Univ Sci & Technol, Dept Civil Engn, Balochistan Campus, Quetta, Pakistan
[2] Jiangsu Univ, Sch Mech Engn, Zhenjiang, Jiangsu, Peoples R China
[3] King Saud Univ, Coll Engn, Ind Engn Dept, Riyadh, Saudi Arabia
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2024年 / 104卷 / 07期
关键词
CONVECTIVE HEAT; STRETCHING SURFACE; NANOFLUID; CILIA; JOULE;
D O I
10.1002/zamm.202300750
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study highlights the significance of entropy generation in the Falkner-Skan flow of Casson fluid past a wedge. To investigate the energy analysis, the governing equations include the heat transport equation in the presence of internal heat source, and the energy transport accounts for heat dissipation using viscous dissipation and Joule heating effect. The mathematical formulation of the problem leads to a set of nonlinear coupled partial differential equations. To obtain a similarity solution, similarity variables are introduced. The resulting differential equations are solved numerically using the shooting technique in conjunction with the Runge-Kutta-Fehlberg 45 (RKF-45) method. Graphical representations are utilized to demonstrate the physical significance of the relevant parameters. The study analyzes the impact of various parameters on the velocity, temperature, and entropy distributions for three wedge positions: stationary, forward-moving, and backward-moving. The results show that an increase in the wedge angle parameter and Casson parameter leads to an increase in fluid velocity, while fluid entropy increases rapidly with an increase in the Brinkmann number, power law Falkner-Skan parameter, and Reynolds number. Moreover, with an increment in the Prandtl and Eckert number, the Nusselt number coefficient decelerates for both static and moving wedge.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Application of the HAM-based Mathematica package SVPh 2.0 on MHD Falkner-Skan flow of nano-fluid
    Farooq, U.
    Zhao, Y. L.
    Hayat, T.
    Alsaedi, A.
    Liao, S. J.
    COMPUTERS & FLUIDS, 2015, 111 : 69 - 75
  • [12] Falkner-Skan slip flow of non-Newtonian fluid over a moving and nonlinearly radiated wedge with variable heat source/sink and viscous dissipation
    Raju, S. V. Siva Rama
    Devi, R. L. V. Renuka
    Asogwa, Kanayo Kenneth
    Raju, S. Suresh Kumar
    Raju, C. S. K.
    Kathyayani, G.
    Kumar, N. Siva
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (01):
  • [13] RADIATIVE FALKNER-SKAN FLOW OF WALTER-B FLUID WITH PRESCRIBED SURFACE HEAT FLUX
    Hayat, Tasawar
    Qayyum, Sumaira
    Imtiaz, Maria
    Alsaedi, Ahmed
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2017, 55 (01) : 117 - 127
  • [14] Response surface optimization of heat transfer rate in Falkner-Skan flow of ZnO - EG nanoliquid over a moving wedge: Sensitivity analysis
    Mahanthesh, B.
    Mackolil, Joby
    Mallikarjunaiah, S. M.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 125
  • [15] Nuclear reactor application on Jeffrey fluid flow with Falkner-skan factor, Brownian and thermophoresis, non linear thermal radiation impacts past a wedge
    Dharmaiah, G.
    Mebarek-Oudina, Fateh
    Kumar, M. Sreenivasa
    Kala, K. Chandra
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2023, 100 (02)
  • [16] Entropy minimization in mixed convective Falkner-Skan flow of ZnO-SAE50 nanolubricant over stationary/moving Riga plate
    Nayak, M. K.
    Mehmood, Rashid
    Muhammad, Taseer
    Khan, Arif Ullah
    Waqas, Hassan
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 26
  • [17] MHD flow and heat transfer of Casson nanofluid over a wedge
    Madhu, Macha
    Kishan, Naikoti
    MECHANICS & INDUSTRY, 2017, 18 (02)
  • [18] Non-linear radiation and dissipative impacts on non-Newtonian hydromagnetic Falkner-Skan fluid through a wedge
    Babu, B. Hari
    Rao, P. S.
    Reddy, Machireddy Gnaneswara
    Varma, S. V. K.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [19] Entropy Generation on MHD Casson Nanofluid Flow over a Porous Stretching/Shrinking Surface
    Qing, Jia
    Bhatti, Muhammad Mubashir
    Abbas, Munawwar Ali
    Rashidi, Mohammad Mehdi
    Ali, Mohamed El-Sayed
    ENTROPY, 2016, 18 (04)
  • [20] Entropy generation due to micro-rotating Casson's nanofluid flow over a nonlinear stretching plate: numerical treatment
    Khan, Abdul Samad
    Abrar, M. N.
    Uddin, Salah
    Awais, M.
    Usman, Imran
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,