Multifunctionalized Supramolecular Cyclodextrin Additives Boosting the Durability of Aqueous Zinc-Ion Batteries

被引:8
作者
Zhang, Zhaolong [1 ]
Luo, Dan [1 ]
Sun, Rongkun [1 ]
Gao, Yizhan [1 ]
Wang, Da [1 ]
Li, Zhi [1 ]
Kang, Xiaohong [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Phys Sci & Engn, Dept Mat Sci & Engn, Beijing 100044, Peoples R China
关键词
aqueous zinc-ion batteries; NMI-CDOTS; cyclingstability; synergistic role; Zn anode;
D O I
10.1021/acsami.4c01180
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The poor cycling stability of aqueous zinc-ion batteries hinders their application in large-scale energy storage due to uncontrollable dendrite growth and harmful hydrogen evolution reactions. Here, we designed and synthesized an electrolyte additive, N-methylimidazolium-beta-cyclodextrin p-toluenesulfonate (NMI-CDOTS). The cations of NMI-CD+ are more easily adsorbed on the abrupt Zn surface to regulate the deposition of Zn2+ and reduce dendrite generation under the combined action of the unique cavity structure with abundant hydroxyl groups and the electrostatic force. Meanwhile, p-toluenesulfonate (OTS-) is able to change the Zn2+ solvation structure and suppress the hydrogen evolution reaction by the strong interaction of Zn2+ and OTS-. Benefiting from the synergistic role of NMI-CD+ and OTS-, the Zn||Zn symmetric cell exhibits superior cycling performance as high as 3800 h under 1 mA cm(-2) and 1 mA h cm(-2). The Zn||V2O5 full battery also shows a high specific capacity (198.3 mA h g(-1)) under 2.0 A g(-1) even after 1500 cycles, and its Coulomb efficiency is nearly 100% during the charging and discharging procedure. These multifunctional composite strategies open up possibilities for the commercial application of aqueous zinc-ion batteries.
引用
收藏
页码:17626 / 17636
页数:11
相关论文
共 50 条
[1]   Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries [J].
Guo, Shan ;
Qin, Liping ;
Zhang, Tengsheng ;
Zhou, Miao ;
Zhou, Jiang ;
Fang, Guozhao ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2021, 34 :545-562
[2]   Aqueous Zinc-ion Batteries [J].
Xie, Zhiying ;
Zheng, Xinhua ;
Wang, Mingming ;
Yu, Haizhou ;
Qiu, Xiaoyan ;
Chen, Wei .
PROGRESS IN CHEMISTRY, 2023, 35 (11) :1701-1726
[3]   Progress on Aqueous Zinc-Ion Batteries [J].
Deng Z. ;
Li M. ;
Fang G. ;
Liang S. .
Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (02) :403-427
[4]   Key Issues and Strategies of Aqueous Zinc-Ion Batteries [J].
Liu, Yi ;
Wang, Huibo ;
Li, Qingyuan ;
Zhou, Lingfeng ;
Zhao, Pengjun ;
Holze, Rudolf .
ENERGIES, 2023, 16 (21)
[5]   Covalent Organic Frameworks in Aqueous Zinc-Ion Batteries [J].
Li, Lihua ;
Yang, Haohao ;
Peng, Hui ;
Lei, Ziqiang ;
Xu, Yuxi .
CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (64)
[6]   Separator designs for aqueous zinc-ion batteries [J].
Li, Bin ;
Zeng, You ;
Zhang, Weisong ;
Lu, Bingan ;
Yang, Qi ;
Zhou, Jiang ;
He, Zhangxing .
SCIENCE BULLETIN, 2024, 69 (05) :688-703
[7]   Polyaniline-coated sodium vanadate nanorods cathode boosting zinc ion dynamics in aqueous zinc-ion batteries [J].
Jia, Rui ;
Yin, Chengjie ;
Wang, Bin ;
Li, Lan ;
Hu, Jinsong .
CHEMICAL ENGINEERING JOURNAL, 2024, 500
[8]   MXenes for the zinc anode protection of aqueous zinc-ion batteries [J].
Dong, Xiaoyu ;
Liu, Ao ;
Peng, Cong ;
Huang, Yan .
ELECTRON, 2025, 3 (01)
[9]   Zinc Anode Protection Strategy for Aqueous Zinc-Ion Batteries [J].
Han Dong ;
Ma Tao ;
Sun Tian-Jiang ;
Zhang Wei-Jia ;
Tao Zhan-Liang .
CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (02) :185-197
[10]   Electrolyte additives toward practical aqueous zinc-ion batteries: recent advances and future challenges [J].
Zheng, Zhi ;
Li, Jing ;
Pan, Yuqi ;
Yu, Yanxi ;
Zhu, Di ;
Prabowo, Justin ;
Wei, Li ;
Chen, Yuan .
NEXT ENERGY, 2023, 1 (04)